Evolved gas analysis of cassava (Manihot esculenta) industrial waste
DOI:
https://doi.org/10.17981/ingecuc.14.1.2018.10Keywords:
Thermogravimetric analysis, kinetics, mass spectroscopy, pyrolysis, biomassAbstract
Introduction: The pyrolysis of agro-industrial waste is an alternative to produce second-generation liquid fuels.
Objective: Determine the kinetics in the pyrolysis process of cassava industrial waste as well as of evolved product formation.
Methodology: Pyrolysis of waste from cassava starch processing was studied via thermogravimetric analysis coupled to mass spectrometry. Thermogravimetric data were adjusted to the distributed activation energy model with one pseudo-component.
Results: Pyrolysis of samples heated at ramps below 30 K/min showed kinetics parameters with different values from the ones obtained for the samples heated at ramps above 50 K/min. This suggests a change in the pyrolysis reaction mechanism linked to heating rate. The kinetic parameters obtained in this work are in agreement with values reported for other biomass in literature. From the evolved gases, 23 m/z signals were identified with enough signal/noise ratio. Mass spectrometry signals were also adjusted with the distributed activation energy model using the kinetic parameters obtained from thermogravimetric data.
Conclusions: Satisfactory results were achieved with the DAEM model with one pseudo component for most of m/z ratio. The lack of adjustment in some m/z ratio can be attributed to secondary reactions in the gas phase.
Downloads
References
[2] S. Mombo, C. Dumat, M. Shahid y E. Schreck, “A socioscientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption,” Environ. Sci. Pollut. Res., pp. 1-15, 2016. https://doi.org/10.1007/s11356-016-8190-z
[3] A. Adekunle, V. Orsat y V. Raghavan, “Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels,” Renew. Sustain. Energy Rev., vol. 64, pp. 518-530, 2016. https://doi.org/10.1016/j.rser.2016.06.064
[4] H. A. Acosta Arguello, C. A. Barraza Yance y A. R. Albis Arrieta, “Adsorción de cromo (VI) utilizando cáscara de yuca (Manihot esculenta) como biosorbente: Estudio cinético,” Ingeniería y Desarrollo, vol. 35, no. 1, 2017. http://dx.doi.org/10.14482/inde.33.2.6368
[5] A. R. Albis Arrieta, J. Martínez y P. Santiago, “Remoción de Zinc (II) de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna/Removal of zinc (II) from aqueous solutions using cassavapeel (Manihot esculenta): column experiments,” Prospectiva, vol. 15, no. 1, pp. 16-28, 2017.
[6] A. R. Albis Arrieta, J. D. Ortiz Toro y J. E. Martínez De la Rosa, “Remoción de cromo hexavalente de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna,” INGE CUC, vol. 13, no. 1, pp. 42-52, 2017. http://dx.doi.org/10.17981/ingecuc.13.1.2017.04
[7] E. R. Zanatta et al., “Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse,” J. Therm. Anal. Calorim., vol. 125, no. 1, pp. 437-445, 2016. https://doi.org/10.1007/s10973-016-5378-x
[8] J. Corton et al., “Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes,” Appl Energy, vol. 177, pp. 852-862, 2016. https://doi.org/10.1016/j.apenergy.2016.05.088
[9] O. L. Ki, A. Kurniawan, C. X. Lin, Y.-H. Ju y S. Ismadji, “Bio-oil from cassava peel: a potential renewable energy source,” Bioresour. Technol., vol. 145, pp. 157-161, 2013. https://doi.org/10.1016/j.biortech.2013.01.122
[10] K. Jayaraman, M. V. Kok y I. Gokalp, “Combustion properties and kinetics of different biomass samples using TG–MS technique,” J. Therm. Anal. Calorim., vol. 127, no. 2, pp. 1361-1370, 2017. https://doi.org/10.1007/s10973-016-6042-1
[11] W. Groenewoud y W. De Jong, “The thermogravimetric analyser-coupled-Fourier transform infrared/mass spectrometry technique,” Thermochim. Acta, vol. 286, no. 2, pp. 341-354, 1996. https://doi.org/10.1016/0040-6031(96)02940-1
[12] G. Özsin y A. E. Pütün, “Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR,” Waste Manag., 2017. https://doi.org/10.1016/j.wasman.2017.03.020
[13] S. Polat, E. Apaydin-Varol y A. E. Pütün, “Thermal decomposition behavior of tobacco stem Part I: TGA– FTIR–MS analysis,” Energy Sourc. A Recov. Util. Environ. Effects, vol. 38, no. 20, pp. 3065-3072, 2016. https://doi.org/10.1080/15567036.2015.1129373
[14] T. Chen, J. Zhang y J. Wu, “Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model,” Bioresour. Technol., vol. 211, pp. 502-508, 2016. https://doi.org/10.1016/j.biortech.2016.03.091
[15] X. Yao, K. Xu y Y. Liang, “Analytical Pyrolysis Study of Peanut Shells using TG-MS Technique and Characterization for the Waste Peanut Shell Ash,” J. Residuals Sci. Technol., vol. 13, no. 4, 2016.
[16] A. Malika, N. Jacques, B. Fatima y A. Mohammed, “Pyrolysis investigation of food wastes by TG-MS-DSC technique,” Biomass Convers. Biorefin., vol. 6, no. 2, pp. 161-172, 2016. https://doi.org/10.1007/s13399-015-0171-9
[17] P. Weerachanchai, C. Tangsathitkulchai y M. Tangsathitkulchai, “Characterization of products from slow pyrolysis of palm kernel cake and cassava pulp residue,” Korean J. Chem. Eng., vol. 28, no. 12, pp. 2262-2274, 2011. https://doi.org/10.1007/s11814-011-0116-3
[18] A. Pattiya y S. Suttibak, “Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit,” J. Anal. Appl. Pyrolysis, vol. 95, pp. 227-235, 2012. https://doi.org/10.1016/j.jaap.2012.02.010
[19] A. Pattiya, J. O. Titiloye y A. V. Bridgwater, “Fast pyrolysis of agricultural residues from cassava plantation for bio-oil production,” Carbon, vol. 51, p. 51.59, 2009.
[20] A. Pattiya, S. Sukkasi y V. Goodwin, “Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor,” Energy, vol. 44, no. 1, pp. 1067-1077, 2012. https://doi.org/10.1016/j.energy.2012.04.035
[21] P. Weerachanchai, C. Tangsathitkulchai y M. Tangsathitkulchai, “Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass,” Suranaree J. Sci. Technol., vol. 17, no. 4, 2010.
[22] G. Várhegyi, P. Szabó y M. J. Antal, “Kinetics of charcoal devolatilization,” Energy fuels, vol. 16, no. 3, pp. 724-731, 2002. https://doi.org/10.1016/S0165-2370(96)00971-0
[23] G. Varhegyi, M. J. Antal Jr, E. Jakab y P. Szabó, “Kinetic modeling of biomass pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 42, no. 1, pp. 73-87, 1997.
[24] G. Várhegyi, Z. Czégény, E. Jakab, K. McAdam y C. Liu, “Tobacco pyrolysis. Kinetic evaluation of thermogravimetric– mass spectrometric experiments,” J. Anal. Appl. Pyrolysis, vol. 86, no. 2, pp. 310-322, 2009. https://doi.org/10.1016/j.jaap.2009.08.008
[25] G. Várhegyi, P. Szabó, F. Till, B. Zelei, M. J. Antal y X. Dai, “TG, TG-MS, and FTIR characterization of highyield biomass charcoals,” Energy fuels, vol. 12, no. 5, pp. 969-974, 1998. https://doi.org/10.1021/ef9800359
[26] A. Albis, E. Ortiz, A. Suárez y I. Piñeres, “TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum),” J. Therm. Anal. Calorim., pp. 1-9, 2013. https://doi.org/10.1007/s10973-013-3227-8
[27] J. P. S. Veiga, T. L. Valle, J. C. Feltran y W. A. Bizzo, “Characterization and productivity of cassava waste and its use as an energy source,” Renew. energy, vol. 93, pp. 691-699, 2016. https://doi.org/10.1016/j.renene.2016.02.078
[28] J. Yue y C. Zuo, “Study on pyrolysis of cassava residues in N2 atmosphere,” Kezaisheng Nengyuan/Renew.Energy Resour., vol. 27, no. 4, pp. 47-50, 2009.
[29] J. Cai, W. Wu y R. Liu, “An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 36, no. 0, pp. 236-246, 2014. http://dx.doi.org/10.1016/j.rser.2014.04.052
[30] F.-X. Collard y J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin,” Renew. Sustain. Energy Rev., vol. 38, no. 0, pp. 594-608, 2014. http://dx.doi.org/10.1016/j.rser.2014.06.013
[31] X. Cao et al., “Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles,” Bioresour. Technol., vol. 155, pp. 21-27, 2014. https://doi.org/10.1016/j.biortech.2013.12.006
[32] J. Cai y L. Ji, “Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass,” J. Math. Chem., vol. 42, no. 3, pp. 547-553, 2007. https://doi.org/10.1007/s10910-006-9130-9
[33] A. Meng, H. Zhou, L. Qin, Y. Zhang y Q. Li, “Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 104, pp. 28-37, 2013. https://doi.org/10.1016/j.jaap.2013.09.013
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.