Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)
DOI:
https://doi.org/10.17981/ingecuc.15.1.2019.03Palabras clave:
gasificación, cáscara de Copoazú, modelo DAEM, TG-MSResumen
Introducción: El uso de especies exóticas como materias primas en biorrefinerías puede impulsar el desarrollo sostenible de regiones como la Amazonía; sin embargo, se considera pertinente generar más estudios experimentales previos, que permitan evaluar su potencialidad técnica, aplicada en este caso específicamente con la cáscara de Copoazú.
Objetivo: El objetivo de este artículo es determinar la cinética de gasificación del carbonizado resultado de la pirólisis de la cáscara de Copoazú.
Metodología: En este trabajo se utilizó el análisis termogravimétrico acoplado a espectroscopía de masas (TGMS), para establecer la distribución de los productos de la gasificación y la cinética de la descomposición del carbonizado, subproducto de la pirólisis de las cáscaras de copoazú. La materia prima fue caracterizada por FTIR y se utilizaron tres velocidades de calentamiento diferentes para el proceso termoquímico.
Resultados: Los parámetros cinéticos del proceso de gasificación se obtuvieron ajustando los datos experimentales con tres modelos diferentes, obteniéndose un buen ajuste al modelo DAEM con tres conjuntos de reacciones.
Conclusiones: Los datos obtenidos pueden utilizarse para modelar las reacciones de gasificación del carbonizado de esta materia prima. La cinética de producción de la mayoría de las moléculas que se detectaron con una abundancia relativa alta se pudo relacionar con las reacciones de descomposición térmica del carbonizado de la cáscara de Copoazú, de acuerdo con el modelo DAEM.
Descargas
Citas
A. V. Bridgwater, “The technical and economic feasibility of biomass gasification for power generation”, Fuel, vol. 74, no. 5, pp. 631–653, May. 1995. https://doi.org/10.1016/0016-2361(95)00001-L
Plan de energías renovables en España, 2011-2020, IDEA, [En línea 2005. https://www.idae.es/tecnologias/energias-renovables/plan-de-energias-renovables-2011-2020
Á. A. Orozco y C. E. Rodríguez, “El Copazú y los negocios inclusivos, una estrategia socioeconómica en Florencia-Caqueta”, Cooperativismo & Desarrollo, vol. 25, no. 112, pp. 1–34, Jul. 2017. Disponible en https://dialnet.unirioja.es/descarga/articulo/6154342.pdf
A. A. González, J. Moncada, A. Idarraga, M. Rosenberg and C. A. Cardona, “Potential of the amazonian exotic fruit for biorefineries: The Theobroma bicolor (Makambo) case”, Industrial Crops and Products, vol. 86, no. 1, pp. 58–67, Aug. 2016. https://doi.org/10.1016/j.indcrop.2016.02.015
J. Pérez, “Modelado unidimensional del proceso de gasificación de biomasa lignocelulósica en lechos empacados en equicorriente. Validación experimental con gasificadores invertidos”, tesis doctoral, Facultad de Ingeniería, Universidad de Valladolid, España, 2007.
W. Groenewoud and W. De Jong, “The thermogravimetric analyser-coupled-Fourier transform infrared/mass spectrometry technique”, Thermochimica Acta, vol. 286, no. 2, pp. 341–354, Sept. 1996. https://doi.org/10.1016/0040-6031(96)02940-1
T. Sonobe and N. Worasuwannarak, “Kinetic analyses of biomass pyrolysis using the distributed activation energy model”, Fuel, vol. 87, no. 3, pp. 414–421, Mar. 2008. https://doi.org/10.1016/j.fuel.2007.05.004
S. Wang, X. Guo, K. Wang and Z. Luo, “Influence of the interaction of components on the pyrolysis behavior of biomass”, Journal of Analytical and Applied Pyrolysis, vol. 91, no. 1, pp. 183–189, May. 2011. https://doi.org/10.1016/j.jaap.2011.02.006
N. Worasuwannarak, T. Sonobe and W. Tanthapanichakoon, “Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique”, Journal of Analytical and Applied Pyrolysis, vol. 78, no. 2, pp. 265–271, Mar. 2007. https://doi.org/10.1016/j.jaap.2006.08.002
E. Granada, P. Eguía, J. Comesaña, D. Patiño, J. Porteiro and J. Miguez, “Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels”, Journal of Thermal Analysis and Calorimetry, vol. 113, no. 2, pp. 569–578, Aug. 2013. https://doi.org/10.1007/s10973-012-2747-y
A. Melgar, D. Borge y J. F. Pérez, “Estudio cinético del proceso de devolatilización de biomasa lignocelulósica mediante análisis termogravimétrico para tamaños de particula de 2 a 19 mm” Dyna, vol. 75, no. 155, pp. 123–131, Jul. 2008. Disponible en https://revistas.unal.edu.co/index.php/dyna/article/view/1746/2405
S. Nagy, P. Shaw and W. Wardowski, Fruits of tropical and subtropical origin: composition, properties and uses, Florida Science Source Inc., USA: Lake Alfred, 1990.
I. Cerón, J. Higuita and C. Cardona, “Analysis of a biorefinery based on Theobroma grandiflorum (copoazu) fruit”, Biomass Conversion and Biorefinery, vol. 5, no. 2, pp. 183–194, Jun. 2015. https://doi.org/10.1007/s13399-014-0144-4
M. Lapuerta, J. J. Hernández and J. n. Rodrıíguez, “Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis”, Biomass and Bioenergy, vol. 27, no. 4, pp. 385–391, Oct. 2004. https://doi.org/10.1016/j.biombioe.2003.11.010
S. Hu, A. Jess and M. Xu, “Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models”, Fuel, vol. 86, no. 17–18, pp. 2778-2788, Dec. 2007. https://doi.org/10.1016/j.fuel.2007.02.031
G. Várhegyi, Z. Czégény, E. Jakab, K. McAdam and C. Liu, “Tobacco pyrolysis. Kinetic evaluation of thermogravimetric–mass spectrometric experiments”, Journal of Analytical and Applied Pyrolysis, vol. 86, no. 2, pp. 310–322, Nov. 2009. https://doi.org/10.1016/j.jaap.2009.08.008
K. Açıkalın, “Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis”, Journal of Thermal Anal and Calorimetry, vol. 109, no. 1, pp. 227–235, Jul. 2012. https://doi.org/10.1007/s10973-011-1714-3
G. Várhegyi, “Aims and methods in non-isothermal reaction kinetics”, Journal of Analytical and Applied Pyrolysis, vol. 79, no. 1, pp. 278–288, May 2007. https://doi.org/10.1016/j.jaap.2007.01.007
G. Várhegyi, P. Szabó and M. J. Antal, “Kinetics of charcoal devolatilization” Energy & fuels, vol. 16, no. 3, pp. 724-731, Mar. 2002. https://doi.org/10.1021/ef010227v
E. Donskoi and D. L. S. McElwain, “Optimization of coal pyrolysis modeling” Combustion and flame, vol. 122, no. 3, pp. 359–367, Aug. 2000. https://doi.org/10.1016/S0010-2180(00)00115-2
Y. F. Huang, W. H. Kuan, P. T. Chiueh and S. L. Lo, “Pyrolysis of biomass by thermal analysis–mass spectrometry (TA–MS)”, Bioresource Technology, vol. 102, no. 3, pp. 3527–3534, Feb. 2011. https://doi.org/10.1016/j.biortech.2010.11.049
A. Albis, E. Ortiz, A. Suárez and I. Piñeres, “TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum)”, Therm Anal Calorim, pp. 275–283, Jan. 2014. https://doi.org/10.1007/s10973-013-3227-8
K. G. Mansaray and A. E. Ghaly, “Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis”, Biomass and Bioenergy, vol. 17, no. 1, pp. 19–31, Jul. 1999. https://doi.org/10.1016/S0961-9534(99)00022-7
R. Hurt, J.-K. Sun and M. Lunden, “A kinetic model of carbon burnout in pulverized coal combustion”, Combustion and flame, vol. 113, no. 1, pp. 181–197, Apr. 1998. https://doi.org/10.1016/S0010-2180(97)00240-X
M. V. Gil, D. Casal, C. Pevida, J. -J. Pis and F. Rubiera, “Thermal behaviour and kinetics of coal/biomass blends during co-combustion”, Bioresource Technology, vol. 101, no. 14, pp. 5601–5608, Jul. 2010. https://doi.org/10.1016/j.biortech.2010.02.008
P. Garn, “An examination of the kinetic compensation effect”, Journal of Thermal Analysis and Calorimetry, vol. 7, no. 2, pp. 475-478, Apr. 1975. https://doi.org/10.1007/BF01911956
M. -L. Chan, J. -M. Jones, M. Pourkashanian and A. Williams, “The oxidative reactivity of coal chars in relation to their structure”, Fuel, vol. 78, no. 13, pp. 1539–1552, Oct. 1999. https://doi.org/10.1016/S0016-2361(99)00074-5

Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 INGE CUC

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los artículos publicados son de exclusiva responsabilidad de sus autores y no reflejan necesariamente las opiniones del comité editorial.
La Revista INGE CUC respeta los derechos morales de sus autores, los cuales ceden al comité editorial los derechos patrimoniales del material publicado. A su vez, los autores informan que el presente trabajo es inédito y no ha sido publicado anteriormente.
Todos los artículos están bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.