Experimental determination of new statistical correlations for the calculation of the heat transfer coefficient by convection for flat plates, cylinders and tube banks

Authors

DOI:

https://doi.org/10.17981/ingecuc.13.2.2017.01

Keywords:

Heat transfer correlations, convection heat units, convective coefficients, Nusselt number, convection

Abstract

Introduction: This project carried out an experimental research with the design, assembly, and commissioning of a convection heat transfer test bench.

Objective: To determine new statistical correlations that allow knowing the heat transfer coefficients by air convection with greater accuracy in applications with different heating geometry configurations.

Methodology: Three geometric configurations, such as flat plate, cylinders and tube banks were studied according to their physical properties through Reynolds and Prandtl numbers, using a data transmission interface using Arduino® controllers Measured the air temperature through the duct to obtain real-time data and to relate the heat transferred from the heating element to the fluid and to perform mathematical modeling in specialized statistical software. The study was made for the three geometries mentioned, one power per heating element and two air velocities with 10 repetitions.

Results: Three mathematical correlations were obtained with regression coefficients greater than 0.972, one for each heating element, obtaining prediction errors in the heat transfer convective coefficients of 7.50% for the flat plate, 2.85% for the plate Cylindrical and 1.57% for the tube bank.

Conclusions: It was observed that in geometries constituted by several individual elements, a much more accurate statistical adjustment was obtained to predict the behavior of the convection heat coefficients, since each unit reaches a stability in the surface temperature profile with Greater speed, giving the geometry in general, a more precise measurement of the parameters that govern the transfer of heat, as it is in the case of the geometry of the tube bank.

Downloads

Download data is not yet available.

Author Biographies

Ismael Fernando Meza Castro, Universidad del Atlántico

Ingeniero Químico, con énfasis en sistemas de gestión ISO 9001:2015, 14001:2015 y OHSAS 18001:2007. Laboré en la empresa GRACETALES LTDA como ingeniero desarrollando análisis de muestras de aguas de proceso, grasas y aceites vegetales, además de supervision de personal del área de laboratorio.

Andrea Esther Herrera Acuña, Servicloro de la Costa

Ingenieria comercial en ventas tecnicas de tratamiento de agua

Luis Guillermo Obregón Quiñones, Universidad del Atlántico

Docente de Ingenieria Quimica de planta de la Universidad del Atlántico.

References

[1] L.G. Obregón, J.C. Pertuz y R.A. Domínguez. (2017). Análisis del desempeño de una torre de enfriamiento a escala de laboratorio para diversos materiales de empaque, temperatura de entrada de agua y relación másica de flujo agua-aire. Prospectiva. [Online]. 15(a), 42-52. Disponible: http://dx.doi.org/10.15665/rp.v15i1.820

[2] E. Gutiérrez y S.L. Tolentino. (2005, Sep.). Determinación del coeficiente de convección crítico para la modificación de un sistema de enfriamiento de ánodo. Universidad, Ciencia y Tecnología. [Online]. 9(35), 147-150. Disponible: http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S1316-48212005000300005&lng=es&nrm=iso

[3] A. Naghash, S. Sattari y A. Rashidi. (2016, Sep.). Experimental assessment of convective heat transfer coefficient enhancement of nanofluids prepared from high surface area nanoporous graphene. International comunications in heat and mass transfer. [Online]. 78, 127-134. Available: http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.09.004

[4] S. Mendoza, J.C. Romero y E. Niebles. (2011, Sep.). Análisis de falla en evaporadores de placas de aluminio de sistemas de acondicionamiento de aire automotriz. INGE CUC. [Online]. 7(1), 59-74. Disponible:http://revistascientificas.cuc.edu.co/index.php/ingecuc/article/view/277

[5] Y.A. Cengel y A.J. Ghajar, Heat and mass transfer: fundamentals and applications. New York, USA: Mcgraw Hill, 2015, pp. 25-402.

[6] E. Tamayo, Y. Retirado y E. Góngora. (2014). Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas. La Habana. [Online]. 17(1), 68-77. http://dx.doi.org/10.1051/epjconf/20122501036

[7] M.G. Rasul, Heat transfer calculation: industrial heat transfer calculation. New York, USA: Mcgraw Hill, 2006, pp. 17.

[8] F.P. Incropera y D.P. DeWitt, Fundamentos de Transferencia de Calor. Ciudad de México, México: Prentice Hall Hispanoamérica, 1999, pp. 17-20.

[9] F. Gonzales, “Determinación experimental de coeficiente de convección y factor de fricción de un intercambiador de placas,” Trabajo de Grado, Dep. Ing. Termi., Univ. Carlos III, Madrid, España, 2008.

[10] L. Uribe y C.A. Gómez, “Diseño y construcción de un banco de pruebas para determinar expresiones de coeficiente de transferencia de calor por convección promedio.,” Proyecto de Grado, Dep. Ing. Y Admón., Univ. Pont. Boliv., Bucaramanga, Colombia, 2008.

[11] A. Albis, I. Caicedo y P. Peña. (2009, Nov.). Determinación del Coeficiente de Transferencia de Calor a Través de una Aplicación de Computadoras. La Serena. [Online]. 21(5), 13-20. http://dx.doi.org/10.4067/S0718-07642010000500003

[12] J. Gonzales, “Determinación experimental de coeficientes de transferencia de calor para convección libre y forzada,” Tesis de Maestría, Dep. Ing. Mecá. Y Electr., Univ. Autono. N. León., San Nicolás de Garza, N.L. México, 1998.

[13] Ingeniería, Soluciones y Tecnología. (2017). RTD P100. [Online]. Disponible: http://www.teii.com.mx/RTDPT100.html

[14] Pixsys Electronics. (2016). Convertidor RTD y Termopares para cabezal DIN – Rfid (NFC). [Online]. Disponible:http://evirtual.lasalle.edu.co/info_basica/nuevos/guia/GuiaClaseNo.3.pdf

[15] Automatizanos Editorial. (2016). Medición de temperatura con RTD PT100, transmisor 4-20 mA y Arduino.[Online].Disponible:http://www.automatizanos.com/articles/2016/02/09/medicion-de-temperatura-con-rtd-pt100-transmisor-4-20-ma-y-arduino

Published

2017-06-01

How to Cite

Meza Castro, I. F., Herrera Acuña, A. E., & Obregón Quiñones, L. G. (2017). Experimental determination of new statistical correlations for the calculation of the heat transfer coefficient by convection for flat plates, cylinders and tube banks. INGE CUC, 13(2), 9–17. https://doi.org/10.17981/ingecuc.13.2.2017.01