Relationship between rain and groundwater in the hydrogeological sectors of the South Basin of Ciego de Ávila
DOI:
https://doi.org/10.17981/ingecuc.17.2.2021.12Keywords:
Hiperanual rainfall, effective precipitation, water recharge, groundwater level, overexploitationAbstract
Introduction: Groundwater constitutes the main source of water in the province of Ciego de Ávila, Cuba; especially in agriculture, which occupies the main economic line, however the overexploitation of aquifers in the southern basin of the province puts the sustainability of this important resource at risk, which is renewed through the natural recharge of rainfall.
Objective: To determine the relationship between precipitation and groundwater levels in the hydrogeological sectors CA-II-2 and CA-II-3 of the Ciego de Ávila South Basin, which can constitute a way for the efficient use of water for irrigation purposes in this area of great agricultural importance.
Methodology: In the development of the research, different methodologies were used: selection of the most representative rain gauges, calculation of effective precipitation, determination of accumulated monthly and annual rainfall; as well as the annual rainfall of the wet and dry periods, completion of rainfall series by the linear regression method, use of the HidroEsta 2 program to obtain the mean hiperanual rainfall and the historical mean levels, absolute minimum and maximum of all the selected wells. The mean rainfall of the area of the sectors was determined with the Isohyet method and the charts of hiperanual limnigrams were constructed using the BARHIS software.
Results: The investigation showed that the average rainfall in the area is 1303.6 mm, higher than the historical average for the province. The water levels in the aquifer range between 0.84 and 12.98 m; where 7.21 m is the absolute average value. The year 1988 had great variations in rainfall, levels and the exploitation of groundwater. This study suggests the need to take measures that contribute to the rational use of groundwater in this overexploited basin due to the intensive use of water resources in agricultural irrigation.
Conclusions: The study carried out was able to verify that the average rainfall in the area is 1303.6 mm, higher than the historical average for the province. The water levels in the aquifer range between 0.84 and 12.98 m, with absolute averages of 6.52 and 7.21 m respectively. The year 1988 presented high variability in rainfall, underground levels and the exploitation of groundwater.
Downloads
References
J. C. Guerrero, L. Castellanos & N. T. Rodríguez, “Calidad de agua para riego de 60 fincas agroecológicas de 4 municipios del departamento de Boyacá,” INGE CUC, vol. 17, no. 1, pp.96–111, 2021. https://doi.org/10.17981/ingecuc.17.1.2021.08
FAO, “Relaciones Tierra-Agua en Cuencas Hidrográficas Rurales,” Boletín de tierras y aguas de la fao, Rom, IT: FAO, 2002. Disponible en https://www.fao.org/3/y3618s/y3618s00.htm
J. J. Ordoñez, Contribuyendo al desarrollo de una Cultura del Agua y la Gestión Integral del Recurso Hídrico, Lim, PE: Sociedad Geográfica de Lima, 2011.
FAO,Afrontar la escasez de agua, Rom, IT: FAO, pp. 15–24, 2013. Disponible en https://www.fao.org/publications/card/es/c/I3015S/
M. H. Badii, J. Y. Landeros y E. Cerna, “El recurso de agua y sustentabilidad,” Daena, vol. 3, no. 1, pp. 661–671, 2008. Recuperado de http://www.spentamexico.org/v3-n1/3%281%29%20661-671.pdf
D. González-Zea, L. Garrote y A. Iglesias, “Análisis hidrológico de los escenarios de cambio climático en España,” J Eng Res, vol. 11, pp. 29–41, 2013. Disponible en http://revistas.um.edu.uy/index.php/ingenieria/article/view/355
R. Barrantes y M. Glave, Amazonía peruana y desarrollo económico. Li, PE: IIEP-GRADE, pp. 1–23, 2014.
A. Y. Dourojeanni y A. Jouravlev,Informe del Cuarto Taller de Taller de Gerentes de Organismos de Cuenca en América Latina y el Caribe. Stgo, CL: CEPAL, 2003. Disponible en https://repositorio.cepal.org/handle/11362/6539
B. Jiménez y J. Galizia,Diagnóstico del agua en las Américas, CDMX, MX: IANAS, pp. 67–81, 2012. Recuperado de https://www.agua.org.mx/wp-content/uploads/2012/03/Libro_Diagnostico_del_Agua_en_las_Americas.pdf
G. Beekman,Agua y seguridad alimentaria, BS-AS, ARG: CAF, pp. 10–18, 2015. Recuperado de https://www.caf.com/media/8252/agua-seguridad-alimentaria-america-sur-caf.pdf
D. Pérez, La explotación de las aguas subterráneas. Un nuevo enfoque. Hab, CU: Felix Varela, pp. 111–134, 2001.
D. Pérez y J. A. Echeverria, “Los recursos hidricos y su significacion en el siglo XXI. El caso particular de Cuba,” Hydr Eng J, vol. 23, no. 3, pp. 9–12, 2002. Disponible en https://go.gale.com/ps/i.do?id=GALE%7CA146838688&sid=googleScholar&v=2.1&it=r&linkaccess=fulltext&issn=16800338&p=IFME&sw=w&userGroupName=anon%7E621bddf9
E. Custodio y M. R. Llamas, Hidrología subterránea. BCN, ES: Omega, pp. 975–996, 1983.
E. L. Díaz, E. C. Romero, N. G. Boschetti y O. C. Duarte, “Vulnerabilidad del agua subterránea en la cuenca del Arroyo Feliciano, Entre Río, Argentina,” Boletín geológico y minero, vol. 120, no. 4, pp. 533–542, 2009.
R. Protti y D. Sojo, “Mapa de vulnerabilidad a la contaminación del acuífero, Cantón de Belén, Heredia, Costa Rica,” RGAC, no. 53, no. 1, pp. 7–12, 2015. https://doi.org/10.15517/rgac.v53i0.21140
J. E. Torres, N. Agudelo, O. L. Ortiz y R. F. Soler, “Evaluación de la vulnerabilidad del recurso hídrico subterráneo del municipio de Cota Cundinamarca mediante el modelo DRASTIC,” PROGRESS Res Eng, no. 12, no. 1, pp. 9–17, 2015. https://doi.org/10.18041/1794-4953/avances.2.263
I. Álvarez y O. Brown, Metodología para el uso sostenible del agua con fines hidroenergéticos: y fines agrícolas en la cuenca del río Suchiate de Guatemala, Chisinau, MDA: EAE, 2019.
P. L. García, “Imputación de Datos en Series de Precipitación Diaria Caso de Estudio Cuenca del Río Quindío ,” Ingeniare, no. 8, pp. 73–86, 2015. https://doi.org/10.18041/1909-2458/ingeniare.18.539
A. Luna y W. Lavado, “Evaluación de métodos hidrológicos para completar datos de precipitación faltantes en estaciones de la cuenca del Jetepeque, Perú,” RTE, vol. 28, no. 3, pp. 42–52, 2015. Disponible en http://www.rte.espol.edu.ec/index.php/tecnologica/article/view/400
V. Villón-Béjar, “HidroEsta, software for hydrological calculations,” TEC, vol. 29, no. 5, pp. 95–108, 2016. http://dx.doi.org/10.18845/tm.v29i5.2520
R. Pizarro, C. Ramírez y J. P. Flores, “Análisis comparativo de cinco métodos para la estimación de precipitaciones areales anuales en períodos extremos,” Bosque, vol. 24, no. , pp. 31–38, 2003. http://dx.doi.org/10.4067/S0717-92002003000300003
D. Casanova, E. Blanco, E. Camejo, E. Dassira y Vafidis, A, “Utilización de método geofísico en el estudio de la intrusión salina en áreas de la empresa Juventud Heroica,” RIHA,vol. 27, no. 2, pp. 81–852006.Disponible en https://riha.cujae.edu.cu/index.php/riha/index
M. A. Mondragón, “Uso de la correlación de Spearman en un estudio de intervención en fisioterapia,” Mov Cient, vol. 8, no. 1, pp. 98–104, 2014. https://doi.org/10.33881/2011-7191.mct.08111
R. Gordón-Mendoza y I. Camargo-Buitrago, “Selección de estadísticas para la estimación de la precisión experimental en ensayos de maíz,” Agron Mesoam, vol. 26, no. 1, pp. 55–63, 2015. https://doi.org/10.15517/am.v26i1.16920

Published
How to Cite
Issue
Section
License
Copyright (c) 2021 INGE CUC

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.