Design of a Windmill for the Water Pumping in a Sprinkle Irrigation System

Authors

  • Oscar Brown Manrique Universidad de Ciego de Avila. (Cuba)
  • Néstor Méndez Jurjo Universidad de Ciego de Avila. (Cuba)
  • Francisco Garcia Reina Universidad de Ciego de Avila. (Cuba)

DOI:

https://doi.org/10.17981/ingecuc.17.2.2021.16

Keywords:

wind rotor, geometry of the blade, useful power, piston pump, solidity coefficient

Abstract

Introduction: The use of the wind energy with practical ends is referred from old times; however at the present time it recovers validity for the necessity of finding alternative sources of energy in front of the conventional fossil fuel that is more and more scarce and it causes serious problems of environmental contamination.  

Objective: Design a windmill for the extraction of water in a simple and efficient way, from the principles of a multiblades windmill and the use of materials recovered in the locality that allows the irrigation of the garlic cultivation with sprinkle irrigation system at the minimum possible cost.  

Methodology: Different methodologies like the experience of the producers, established technical approaches for the selection of the relationship of speeds diameter of the rotor, coefficient of sustentation; haulage coefficient and attack angle were used. The analytic method was used for the calculation of the coefficient of solidity, the cord angles, the coefficient of power, the useful power, real flow, hydraulic power of the pump, total force in the piston, centrifugal force, sustentation force, drag force and the starting torque generated in a windmill. 

Results: They were obtained starting from the wind speeds registered in the locality during 30 years of systematic studies and the defined parameters and calculated for the wind rotor and the volumetric pump.  It was possible to design a windmill with the mechanical and hydraulics characteristics appropriate to be used in the agriculture. 

Conclusions: The investigation demonstrated that the design of the windmill allows to complete the demands of the pumping of water for the irrigation system when guaranteeing a real flow of 0,17 L s-1 and a volume of water of 0,30 L displaced by the pump in each revolution of the wind rotor. The power generated by the wind rotor satisfies the power required by the pump. 

Downloads

Download data is not yet available.

References

E. A. Soler, L .M. Sánchez & R. Borrego, “Caracterización del viento para evaluar su potencial energético en la Isla de la Juventud,” Ciencia de la Tierra y el Espacio, vol. 16, no. 2, pp. 164–175, 2015. Disponible en http://www.iga.cu/

TESE (Ed.), Tecnología Solar-Eolica-Hidrógeno-Pilas de combustible como fuentes de energía. MOR, MX: TESE, pp. 12–22, 2009. Recuperado de http://www.relaq.mx/RLQ/tutoriales/e-bookCyT2.pdf

T. P. Chang, “Estimation of wind energy potential using different probability density functions,” Appl Energy, vol. 88, no. 5, pp. 1848–1856, 2011. https://doi.org/10.1016/j.apenergy.2010.11.010

D. Avila-Prats, R. Alesanco-Gascía and F. García-García, “Coste del kWh eólico generado en Cuba, a partir de datos de viento de una región de buenos potenciales eólicos,” RIM, vol. 13, no. 3, pp. 38–45, 2010. Disponible en https://ingenieriamecanica.cujae.edu.cu/index.php/revistaim/article/view/49

N. Galán, E. Orozco, N. Mejías & C. Mellado, “Análisis Estadístico de la Velocidad del Viento en Mazatlán Sinaloa,” Rev Anál Cuant Est, vol. 2, no. 4, pp. 288–294, 2015. Recuperado de https://www.ecorfan.org/bolivia/researchjournals/Analisis_Cuantitativo_y_Estadistico/analisis4/3%20Analisis%20Cuantitativo%20y%20Estadistico%20Vol%202%20Num%204%20288-294.pdf

J. Proenza, J. E. Piña, R. Quevedo & M. Rojas, “Estudio del recurso eólico en la zona costera de la provincia Holguín,” Ciencias Holguín, vol. 12, no. 1, pp. 1–10, 2006. Disponible en http://www.ciencias.holguin.cu/index.php/cienciasholguin/article/view/334

A. Montesinos Larrosa, “Historia de la energía eólica en Cuba,” Energía y Tú, vol. 37, no. 37, pp. 9–17, 2007.

M. Barreto & J. J. Duffy, “Riego solar-eólico por goteo de bajo costo para pequeños agricultores,” presentado al IV ISES_CLA/XVII-SPES, APES/UNSAAC/PUCP, CUZ, PE, pp. 1–5, 2010. Disponible en https://www.perusolar.org/xvii-spes-2010-cusco/

Hanson, D. May, R. Voss, M. Cantwell & R. Rice, “Response of garlic to irrigation water,” Agric Water Manage, vol. 58, no. 1, pp. 29–43, 2003. https://doi.org/10.1016/S0378-3774(02)00076-8

A. I. Prato-Sarmiento, “Evaluación financiera de ajo (Allium sativum L.), morado Nacional y Peruano en el altiplano cundiboyacense, Colombia,” Rev CTA, vol. 17, no. 1, pp. 43–53, 2016. https://doi.org/10.21930/rcta.vol17_num1_art:460

P. Fernández.Antecedentes Históricos y fuentes eólicas, Energía Eólica I. , CANTB, ES, UC, pp. 1–20, 2000.

P.D. Fleming and S. D. Probert, “Design and performance of a small shrouded Cretan windwheel,” Appl Ener, vol. 10, no. 2, pp. 121–139, 1982. https://doi.org/10.1016/0306-2619(82)90016-2

E. Riva.Diseño de un molino de viento para extraer agua del subsuelo, para riego en zonas rurales.Professional thesis, PUN, PE, Depto Ing Mec Eléct, UNAP., 2018. Disponible en http://repositorio.unap.edu.pe/handle/UNAP/8884

J. Calle, J. Guaman & L. Chunchi.Sistema de riego en campos de cultivos y pastizales mediante aeropumpa. In: Investigación, ciencia y tecnología, UPS, CUEN, EC, pp. 139–169, 2009. Disponible en http://dspace.ups.edu.ec/handle/123456789/10923

T. Sánchez, Seminario Internacional sobre energías renovables, Informe, ITDG, SC, BOL, 2007.

G. Newman, “Multiple actuator-disc theory for wind turbines,” J Wind Eng Ind Aerodyn, vol. 24, no. 3, pp. 215–225, 1986. https://doi.org/10.1016/0167-6105(86)90023-1

E. Torquati. Características técnicas para la implementación de molinos de viento para bombeo de agua. BOG, CO: Jober, pp. 11–28, 2003. Recuperado de https://www.molinosjober.com/molinosjober_archivos/caracteristicas_tecnicas_para_la_implementacion_de_molinos_de_viento_para_bombeo_de_agua_jober.pdf

A. Lecuona. La energía eólica: principios básicos y tecnología. MAD, ES: UC3M, pp. 1–79, 2002.

J. Galarza, “Diseño de un molino de viento para extracción de agua,” Professional thesis, DMQ, EC, Depto Ing Mec USFQ, 2016. Disponible en http://repositorio.usfq.edu.ec/handle/23000/5755

P. Boomgaard, “Technologies of a trading empire: Dutch introduction of water and windmills in early-modern Asia, 1650s-1800,” Hist Technol, vol. 24, no. 1, pp. 41–59, Jan. 2008. https://doi.org/10.1080/07341510701616915

M. Castro, J. I. Rojas & M. P. Carranza, “Caracterización tecnológica de los molinos de viento mediterráneos españoles,” DYNA, vol. 80, no. 177, pp. 22–30, 2013. Disponible en https://repositorio.unal.edu.co/handle/unal/42971

F. García, “Determinación de la estabilidad de la mezcla de etanol con naftas mediante la medición de sus propiedades dieléctricas y refractométricas,” INGE CUC,vol. 16, no. 2, pp. 141–150, 2020. https://doi.org/10.17981/ingecuc.16.2.2020.10

Downloads

Published

2021-10-12

How to Cite

Brown Manrique, O., Méndez Jurjo, N., & Garcia Reina, F. (2021). Design of a Windmill for the Water Pumping in a Sprinkle Irrigation System. INGE CUC, 17(2), 183–192. https://doi.org/10.17981/ingecuc.17.2.2021.16