Review of Vehicle Routing Problems Solving Software
DOI:
https://doi.org/10.17981/ingecuc.17.1.2021.23Keywords:
Logistics, distribution system, vehicle routing problems, VRP, SMEs, routing program, logisticsAbstract
Introduction: In a context of global competition and technological advances, logistics has become very relevant for the proper functioning of companies, as this can represent up to 25% of the cost of goods. In this sense, vehicle routing problem solving (VRP) software is an opportunity to improve the performance of small and medium-sized enterprises (SMEs) in Argentina. In recent years, the supply of VRPs has increased significantly, although they present variants that are - a priori - difficult to discern.
Objective: To identify, characterise and compare VRP resolution software, recognising among them the most recommendable in terms of work tools and feasible to apply in SMEs, with the aim of generating a contribution to the strengthening of their distribution systems.
Methodology: The following question is defined: Which of the routing software studied and analysed are the most convenient and recommendable for small and medium-sized enterprises? Why? For the information search, the platforms Scopus, ResearchGate, GoogleAcademic, and Google were consulted. Based on a prior criteria definition, the selected software are compared and the question is answered.
Results: From the results obtained in the literature search, a number of criteria were used to select and characterise, compare and analyse the software. The six selected software were SimpliRoute, RouteXL, RoutificMain, OptimoRoute, VRP Spreadsheet Solver and ArcGIS Online.
Conclusions: The software considered most suitable are VRP Spreadsheet Solver, SimpliRoute and OptimoRoute due to their easy accessibility and ability to cover numerous decision variables. However, SimpliRoute and OptimoRoute have the disadvantage of not being free.
Downloads
References
E. Zevallos, “Micro, pequeñas y medianas empresas en América Latina,” Rev CEPAL, vol. 79, pp. 53–70, Abr. 2003. Disponible en https://repositorio.cepal.org/bitstream/handle/11362/10874/079053070_es.pdf?sequence=1
C. B. Ynzunza-Cortés, J. M. Izar-Landeta, J. G. Bocarando - Chacón, F. Aguilar-Pereyra & M. Larios-Osorio, “El Entorno de la Industria 4.0: Implicaciones y Perspectivas Futuras,” ConCiencia Tecnol, no. 54, pp. 33–45, 2017. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=6405835
C. Kirby & N. Brosa, La logística como factor de competitividad de las pymes en las Américas, BO, CO: BID, 2011. Recuperado de https://publications.iadb.org/publications/spanish/document/La-logística-como-factor-de-competitividad-de-las-Pymes-en-las-Américas.pdf
A. Olivera, “Heurísticas para Problemas de Ruteo de Vehículos,” Tesis M.S., dpto Ing Sist, UDELAR, MVD, 2004. Disponible en https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/3508
C. Duván Garcés Ramírez, “Modelo de entregas directas para la reducción de costos logísticos de distribución en empresas de consumo masivo. Aplicación en una empresa piloto de caldas,” Tesis M.S., Fac Adm, UNAL, MZL, CO, 2010. Disponible en https://repositorio.unal.edu.co/handle/unal/3371
División de Transporte, “Banco Interamericano de Desarrollo,” en Índice de gastos logísticos, 2013. Disponible en http://logisticsportal.iadb.org/node/4210
Observatorio PyME, Un desafío estructural para las PyME industriales, observatoriopyme.org, 2009. Recuperado de https://www.observatoriopyme.org.ar/wp-content/uploads/2014/09/FOP_IE_0907_Un-desafio-estructural-para-las-PyME-industriales.pdf
CEDOL, Cambios y mirada prospectiva de las operaciones logísticas. BA, AR: CEDOL, 2020. Recuperado de https://www.cedol.org.ar/_content/downloads/publicaciones/cedol2020.pdf
CEDOL, Los Costos Ocultos y Contingentes de la Actividad Logística. BA, AR: CEDOL, 2016. Recuperado de http://www.cedol.org.ar/down/Los-Costos-Ocultos-y-Contingentes-de-la-Actividad-Logistica.pdf
H. Fan, Y. Zhang, P. Tian, Y. Lv & H. Fan, “Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance,” Com Oper Res, vol. 129, pp. 1–16, May. 2021. https://doi.org/10.1016/j.cor.2021.105211
Y. L. Velásquez, “Análisis de las características y aplicaciones de los sistemas de ruteo de vehículos,” trabajo Especialización, dpto Ing, UMNG, BO, CO 2015. Disponible en https://repository.unimilitar.edu.co/handle/10654/13308
P. Toth, D. Vigo, “Software Tools and Emerging Technologies for Vehicle Routing and Intermodal Transportation,” en Vehicle Routing: Problems, Methods, and Applications, 2 Ed, Series on Optimization, BLQ, IT: MOS-SIAM, pp. 355–384, 2014.
R. Arocena, H. Tommasino, N. Rodriguez, J. Sutz, E. Alvarez & A. Romano, “Integralidad: tensiones y perspectivas,” Cuadernos de extensión Nº 1, URU: CSEAM. Recuperado de https://www.extension.udelar.edu.uy/wp-content/uploads/2017/11/Cuaderno-n%C2%B01-integralidad.pdf
F. Stevenazzi y H. Tommasino. , “Universidad e integralidad, algunas reflexiones sobre procesos de búsqueda y transformación,” en Fronteras universitarias en el Mercosur: debates sobre la evaluación en prácticas en extensión, COR, AR: UNC, pp. 55–72, 2017.
R. Alonso Aduviri Choque, “Algoritmo genético multiobjetivo para la optimización de la distribución de ayuda humanitaria en caso de desastres naturales en el Perú,” tesis bachiller, dpto Cienc Ing, PUCP, LI, PE, 2018. Disponible en http://hdl.handle.net/20.500.12404/15478
A. Tafesse, “Route optimisation for the South African Post Office SoC LTD,” mini-dissertation, dpto Ing Env Info Tech, UP, Pry, ZA, 2015. Available: https://repository.up.ac.za/handle/2263/52836
S. Dang, J. Shi & Y. Li, “Big Data Management in Transport & Logistics Industry: A Literature,” J Bus Stud, vol. 2, no. 3, pp. 56–62, 2019. https://doi.org/10.26677/TR1010.2019.78
M. Bouneffa, C. Fonlupt, A. Ahmad & H. Hendi, “Ontology-Based Reasoning System for Logistics Applications Deployment” SSRN Electron J, SADASC'18, CAS, Morocco, pp. 1–6, 27-28 Feb. 2018. https://doi.org/10.2139/ssrn.3187068
G. Erdoğan, “An open source Spreadsheet Solver for Vehicle Routing Problem,” COR, vol. 84, pp. 62–72, Aug. 2017. https://doi.org/10.1016/j.cor.2017.02.022
L. M. Scott, M. V. Janikas, “Spatial Statistics in ArcGIS,” in Handbook of applied spatial analysis, M. Fischer & A. Getis, eds, DE, GE: Springer, pp. 27–41, 2010. https://doi.org/10.1007/978-3-642-03647-7_2

Published
How to Cite
Issue
Section
License
Copyright (c) 2021 INGE CUC

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.