Implementation of the k -Neighbors Technique in a recommender algorithm for a purchasing system using NFC and Android
DOI:
https://doi.org/10.17981/ingecuc.13.1.2017.01Keywords:
Algorithm, android, application, database, feedback, mobile, products, recommender, serverAbstract
Introduction: This paper aims to present the design of a mobile application involving NFC technology and a collaborative recommendation algorithm under the K-neighbors technique, allowing to observe personalized suggestions for each client.
Objective: Design and develop a mobile application, using NFC technologies and K-Neighbors Technique in a recommendation algorithm, for a Procurement System.
Methodology: The process followed for the design and development of the application focuses on:
• Review of the state of the art in mobile shopping systems.
• State-of-the-art construction in the use of NFC technology and AI techniques for recommending systems focused on K-Neighbors Algorithms
• Proposed system design
• Parameterization and implementation of the K-Neighbors Technique and integration of NFC Technology
• Proposed System Implementation and Testing.
Results: Among the results obtained are detailed:
• Mobile application that integrates Android, NFC Technologies and a Technique of Algorithm Recommendation
• Parameterization of the K-Neighbors Technique, to be used within the recommended algorithm.
• Implementation of functional requirements that allow the generation of personalized recommendations for purchase to the user, user ratings
Conclusions: The k-neighbors technique in a recommendation algorithm allows the client to provide a series of recommendations with a level of security, since this algorithm performs calculations taking into account multiple parameters and contrasts the results obtained for other users, finding the articles with a Greater degree of similarity with the customer profile. This algorithm starts from a sample of similar, complementary and other unrelated products, applying its respective formulation, we obtain that the recommendation is made only with the complementary products that obtained higher qualification; Making a big difference with most recommending systems on the market, which are limited to suggest the best-selling, best qualified or in the same category.
Downloads
References
[2] Izaguirre, E.E. (2015). Sistemas de recomendación en Apache Spark. Disponible enn: http://academica-e.unavarra.es/handle/2454/19015 .
[3] Gomez, C.A., Hunt, N. (2016). The Netflix Recommender System: Algorith, Business Value, and Innovation. Journal ACM Transactions on Management Information Systems, 6, pp. 13,3-13,5.
[4] Honhwei, D. (2013). NFC Technology: Today and Tomorrow. International Journal of Future Computer and Communication, 2, pp.351-353.
[5] ISO. (2004). INTERNATIONAL STANDARD ISO/IEC 18092:2013 TECHNICAL CORRIGENDUM 1. Disponible en: http://www.iso.org/iso/catalogue_detail.htm?csnumber=38578
[6] Nikitin, V. & Lazar, S. (2007, Marzo). ”An Overview of Near Field UHF RFID”. Presentado: IEEE International Conference on RFID, Texas, USA.
[7] Maillo, J & Triguero I. (2003). Un enfoque MapReduce del algoritmo k-vecinos más cercanos para Big Data. ACM, 7, pp. 971-980.
[8] Smith, S. (2016). Digital Commerce Transactions to surge: Market to see Sustantial Contributions from eCommerce Purchases. Disponible en: http://www.juniperresearch.com/press/press-releases/digital-commerce-transactions-to-surge-reaching-ov.
[9] Coskum, V. & Ozdenizci, B. (2013). A Survey on Near Field Communication (NFC) Technology. Wireless Personal Communications, 71, pp. 2259-2294.
[10] López, F.V. (2013). Técnicas eficientes para la recomendación de productos basadas en filtrado colaborativo (Tesis de Doctorado). Departamento de tecnologías de la información y de las comunicaciones, Universidad de Coruña, España.
[11] Fuentes, J.J. (2009). Sistema Recomendador Turístico (Master en Ingeniería Telemática). Departamentos de Redes e Ingeniería, Universidad de Vigo, Orense, España. Pp. 34-38.
[12] Sánchez, D.G. & Piza, I.E. (2013). Un algoritmo de clasificación incremental basado en los k-vecinos más similares para datos mezclados. Revista-Facultad de Ingeniería Universidad de Antioquia, 67, pp. 19-25.
[13] Bobadilla, J. (2010). A new collaborative filtering metric that improves the behavior of recommender systems. Knowledge-Based Systems , 23, pp. 520-528.
[14] Pita, F.S. & Pertega, D.S. (2001). Relación entre variables cuantitativas. Disponible en: https://www.fisterra.com/mbe/investiga/var_cuantitativas/var_cuantitativas2.pdf.
[15] Ekstrand, J.T. & Konstan, J.A. (2011). Collaborative Filtering Recommender Systems. Now Foundations and Trends, 23, pp. 291-320.
[16] Spreitzenbarth, M y Freiling, F. (2013, Marzo). “Having a deeper look into android applications”.Presentado en: Proceedings of the 28th Annual ACM Symposium on Applied Computing, New York, USA. pp.16-18.
[17] Fielding, R & Gettys, J. (1999). Hypertext Transfer Protocol –HTTP/1.1. En: https://tools.ietf.org/html/rfc2616.
[18] Ainhoa, G.E. (2013). Uso del Contexto social en estrategias de marketing para sistemas recomendadores (Master en Investigación). Facultad de Informática, Universidad de Complutense, Madrid, España.
[19] Sarwar, B. y Karypis, G. (2015). Collaborative Filtering Recommendation Algorithm. Advanced Science and Technology Letters, 111, pp. 143-146.
[20] Hayder, N.K y Behadili, A.L. (2010). Classification Algorithms for Determining Handwritten Digit. Electrical and Electronic Engineering, 12, pp 96-99.
[21] Carratala, O.J & Ruiz, E.V.(1996).Algoritmos de búsqueda de vecinos más próximos en espacios métricos (Tesis Doctoral), Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, España, pp. 123-125.
[22] Maillo J. & Triguero, I. (2015). Un enfoque MapReduce del algoritmo k-vecinos m ́as cercanos para Big Data. Neurocomputing, 150, pp. 332-333.
[23] Lineberger, J & Thompson, W. (2016). Recommendations Engine in a Layered Social Media Webpage. Patent Application Publication, pp 1-14.
[24] García, S.E. & Romero, C.M. (2008). Sistema recomendador colaborativo usando minería de datos distribuida para la mejora continua de cursos e-learning. Electrical and Electronic Engineering, 3, pp. 19-20.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.