Implementation of the k -Neighbors Technique in a recommender algorithm for a purchasing system using NFC and Android

Authors

  • Oscar Arley Riveros Universidad Distrital Francisco José de Caldas
  • Juan Guillermo Romero Universidad Distrital Francisco José de Caldas
  • Jhon Francined Herrera Universidad Distrital Francisco José de Caldas

DOI:

https://doi.org/10.17981/ingecuc.13.1.2017.01

Keywords:

Algorithm, android, application, database, feedback, mobile, products, recommender, server

Abstract

Introduction: This paper aims to present the design of a mobile application involving NFC technology and a collaborative recommendation algorithm under the K-neighbors technique, allowing to observe personalized suggestions for each client.

Objective: Design and develop a mobile application, using NFC technologies and K-Neighbors Technique in a recommendation algorithm, for a Procurement System.

Methodology: The process followed for the design and development of the application focuses on:

• Review of the state of the art in mobile shopping systems.

• State-of-the-art construction in the use of NFC technology and AI techniques for recommending systems focused on K-Neighbors Algorithms

• Proposed system design

• Parameterization and implementation of the K-Neighbors Technique and integration of NFC Technology

• Proposed System Implementation and Testing.

Results:  Among the results obtained are detailed:

• Mobile application that integrates Android, NFC Technologies and a Technique of Algorithm Recommendation

• Parameterization of the K-Neighbors Technique, to be used within the recommended algorithm.

• Implementation of functional requirements that allow the generation of personalized recommendations for purchase to the user, user ratings

Conclusions: The k-neighbors technique in a recommendation algorithm allows the client to provide a series of recommendations with a level of security, since this algorithm performs calculations taking into account multiple parameters and contrasts the results obtained for other users, finding the articles with a Greater degree of similarity with the customer profile. This algorithm starts from a sample of similar, complementary and other unrelated products, applying its respective formulation, we obtain that the recommendation is made only with the complementary products that obtained higher qualification; Making a big difference with most recommending systems on the market, which are limited to suggest the best-selling, best qualified or in the same category.

Downloads

Download data is not yet available.

References

[1] Gutiérrez, R. (2015). La era digital revoluciona el mundo del Shopper. Marketing News, Edición (59), pp. 20-21.
[2] Izaguirre, E.E. (2015). Sistemas de recomendación en Apache Spark. Disponible enn: http://academica-e.unavarra.es/handle/2454/19015 .
[3] Gomez, C.A., Hunt, N. (2016). The Netflix Recommender System: Algorith, Business Value, and Innovation. Journal ACM Transactions on Management Information Systems, 6, pp. 13,3-13,5.
[4] Honhwei, D. (2013). NFC Technology: Today and Tomorrow. International Journal of Future Computer and Communication, 2, pp.351-353.
[5] ISO. (2004). INTERNATIONAL STANDARD ISO/IEC 18092:2013 TECHNICAL CORRIGENDUM 1. Disponible en: http://www.iso.org/iso/catalogue_detail.htm?csnumber=38578

[6] Nikitin, V. & Lazar, S. (2007, Marzo). ”An Overview of Near Field UHF RFID”. Presentado: IEEE International Conference on RFID, Texas, USA.
[7] Maillo, J & Triguero I. (2003). Un enfoque MapReduce del algoritmo k-vecinos más cercanos para Big Data. ACM, 7, pp. 971-980.
[8] Smith, S. (2016). Digital Commerce Transactions to surge: Market to see Sustantial Contributions from eCommerce Purchases. Disponible en: http://www.juniperresearch.com/press/press-releases/digital-commerce-transactions-to-surge-reaching-ov.
[9] Coskum, V. & Ozdenizci, B. (2013). A Survey on Near Field Communication (NFC) Technology. Wireless Personal Communications, 71, pp. 2259-2294.
[10] López, F.V. (2013). Técnicas eficientes para la recomendación de productos basadas en filtrado colaborativo (Tesis de Doctorado). Departamento de tecnologías de la información y de las comunicaciones, Universidad de Coruña, España.
[11] Fuentes, J.J. (2009). Sistema Recomendador Turístico (Master en Ingeniería Telemática). Departamentos de Redes e Ingeniería, Universidad de Vigo, Orense, España. Pp. 34-38.
[12] Sánchez, D.G. & Piza, I.E. (2013). Un algoritmo de clasificación incremental basado en los k-vecinos más similares para datos mezclados. Revista-Facultad de Ingeniería Universidad de Antioquia, 67, pp. 19-25.
[13] Bobadilla, J. (2010). A new collaborative filtering metric that improves the behavior of recommender systems. Knowledge-Based Systems , 23, pp. 520-528.
[14] Pita, F.S. & Pertega, D.S. (2001). Relación entre variables cuantitativas. Disponible en: https://www.fisterra.com/mbe/investiga/var_cuantitativas/var_cuantitativas2.pdf.
[15] Ekstrand, J.T. & Konstan, J.A. (2011). Collaborative Filtering Recommender Systems. Now Foundations and Trends, 23, pp. 291-320.
[16] Spreitzenbarth, M y Freiling, F. (2013, Marzo). “Having a deeper look into android applications”.Presentado en: Proceedings of the 28th Annual ACM Symposium on Applied Computing, New York, USA. pp.16-18.
[17] Fielding, R & Gettys, J. (1999). Hypertext Transfer Protocol –HTTP/1.1. En: https://tools.ietf.org/html/rfc2616.

[18] Ainhoa, G.E. (2013). Uso del Contexto social en estrategias de marketing para sistemas recomendadores (Master en Investigación). Facultad de Informática, Universidad de Complutense, Madrid, España.
[19] Sarwar, B. y Karypis, G. (2015). Collaborative Filtering Recommendation Algorithm. Advanced Science and Technology Letters, 111, pp. 143-146.
[20] Hayder, N.K y Behadili, A.L. (2010). Classification Algorithms for Determining Handwritten Digit. Electrical and Electronic Engineering, 12, pp 96-99.
[21] Carratala, O.J & Ruiz, E.V.(1996).Algoritmos de búsqueda de vecinos más próximos en espacios métricos (Tesis Doctoral), Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, España, pp. 123-125.
[22] Maillo J. & Triguero, I. (2015). Un enfoque MapReduce del algoritmo k-vecinos m ́as cercanos para Big Data. Neurocomputing, 150, pp. 332-333.
[23] Lineberger, J & Thompson, W. (2016). Recommendations Engine in a Layered Social Media Webpage. Patent Application Publication, pp 1-14.
[24] García, S.E. & Romero, C.M. (2008). Sistema recomendador colaborativo usando minería de datos distribuida para la mejora continua de cursos e-learning. Electrical and Electronic Engineering, 3, pp. 19-20.

Published

2017-01-01

How to Cite

Riveros, O. A., Romero, J. G., & Herrera, J. F. (2017). Implementation of the k -Neighbors Technique in a recommender algorithm for a purchasing system using NFC and Android. INGE CUC, 13(1), 9–18. https://doi.org/10.17981/ingecuc.13.1.2017.01