Memory recovery through gene therapy with a single chain antibody fragment selective for Aβ oligomers in a model of Alzheimer’s disease in rats
DOI:
https://doi.org/10.17981/JACN.4.1.2023.2Keywords:
LTM, Alzheimer’s Disease, gene therapy, scFv, single chain antibody fragment, Aβ oligomersAbstract
Strong evidence supports the hypothesis that synapse damage and memory impairment in early Alzheimer disease (AD) might be due to synaptic failure caused by amyloid beta oligomers (AβOs). We demonstrated the preclinical efficacy of a single-chain variable-fragment (scFv) antibody NUsc1 that selectively targets a subpopulation of AβOs; NUsc1 prevented AβO-induced inhibition of long-term potentiation in hippocampal slices and short-term memory impairment in mice. Since specific targeting of AβOs by NUsc1 may be a substantial improvement in target engagement and efficacy for AD therapy, we developed an adeno-associated virus (AAV) vector to drive neuronal expression of NUsc1 within the brain. AAV-NUsc1 rescued short-term memory (STM) for objects and congeners interaction in mice AD models. Purpose: In heterozygous McGill-R-Thy1-APP transgenic (Tg+/–) rat model of AD, progressive amyloid pathology is accompanied by cognitive impairment involving long-term memory (LTM) decline. LTM in a novel-object-recognition (NOR) task was impaired in 4-month-old (Tg+/–) male rats, suggesting that they are unable to form/evoke such discriminative memories. Hence, we investigated if AAV-NUsc1 treatment could rescued this memory. Methods: 10-12 weeks-old either Tg or wild type male rats were i.c.v. infused with AAV-NUsc1. Two months later, short-term exploratory behavior, habituation to an open field (OF), object discrimination and LTM for objects were assessed. Results: AAV-NUsc1 treated Tg rats were able to successfully perform the task 24 h after training, denoting recovery of LT discrimination capacity and LTM formation. Wild type rats successfully performed the task either treated or not with AAV-NUsc1. Also, exploration and short-term habituation to an open field was preserved in Tg+/– rats either treated or not. Conclusions: Our present and previous results suggest that AAV-NUsc1 represents a significant advance in gene therapy, supporting the feasibility of immunotherapy using viral vector-mediated NUsc1 gene delivery as a potential therapeutic approach in AD.
Downloads
References
Ahmad, Z.; Yeap, S.; Ali, A.; Ho, W.; Alitheen, N. & Hamid, M. (2012). ScFv antibody: Principles and clinical application. Clinical and Developmental Immunology, 1–16.
https://doi.org/10.1155/2012/980250
Akkerman, S.; Blokland, A.; Reneerkens, O.; Van Goethem, N.; Bollen, E.; Gijselaers, H.; Lieben, C.; Steinbusch, H. & Prickaerts, J. (2012). Object recognition testing: Methodological considerations on exploration and discrimination measures. Behavioural Brain Research, 232(2), 335–347.
https://doi.org/10.1016/J.BBR.2012.03.022
Chabrier, M.; Cheng, D.; Castello, N.; Green, K. & LaFerla, F. (2014). Synergistic effects of amyloid-beta and wild-type human tau on dendritic spine loss in a floxed double transgenic model of Alzheimer’s disease. Neurobiology of Disease, 64, 107–117.
https://doi.org/10.1016/j.nbd.2014.01.007
Do Carmo, S. & Cuello, A. (2013). Modeling Alzheimer’s disease in transgenic rats. Molecular Neurodegeneration, 8(1), 1–11.
https://doi.org/10.1186/1750-1326-8-37
Dunbar, C.; High, K.; Joung, J.; Kohn, D.; Ozawa, K. & Sadelain, M. (2018). Gene therapy comes of age. Science, 359(6372), 1–10.
https://doi.org/10.1126/SCIENCE.AAN4672
España, J.; Giménez-Llort, L.; Valero, J.; Miñano, A.; Rábano, A.; Rodriguez-Alvarez, J.; LaFerla, F. & Saura, C. A. (2010). Intraneuronal β-Amyloid Accumulation in the Amygdala Enhances Fear and Anxiety in Alzheimer’s Disease Transgenic Mice. Biological Psychiatry, 67(6), 513–521.
https://doi.org/10.1016/j.biopsych.2009.06.015
Ferreira, S. & Klein, W. (2011). The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiology of Learning and Memory, 96(4), 529–543.
https://doi.org/10.1016/J.NLM.2011.08.003
Ferrer, I.; Rovira, M.; Sanchez, M.; Rey, M. & Costa-Jussá, F. (2004). Neuropathology and Pathogenesis of Encephalitis following Amyloid β Immunization in Alzheimer’s Disease. Brain Pathology, 14(1), 11–20.
https://doi.org/10.1111/j.1750-3639.2004.tb00493.x
Fischell, J. & Fishman, P. (2021). A Multifaceted Approach to Optimizing AAV Delivery to the Brain for the Treatment of Neurodegenerative Diseases. Frontiers in Neuroscience, 15, 1–20.
https://doi.org/10.3389/fnins.2021.747726
Fukumoto, H.; Tokuda, T.; Kasai, T.; Ishigami, N.; Hidaka, H.; Kondo, M.; Allsop, D. & Nakagawa, M. (2010). High-molecular-weight β-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. The FASEB Journal, 24(8), 2716–2726.
https://doi.org/10.1096/FJ.09-150359
Fuller, J.; Stavenhagen, J. & Teeling, J. (2014). New roles for Fc receptors in neurodegeneration-the impact on Immunotherapy for Alzheimer’s Disease. Frontiers in Neuroscience, 8, 1–10.
https://doi.org/10.3389/FNINS.2014.00235
Galeano, P.; Martino, P.; Do Carmo, S.; Blanco, E.; Rotondaro, C.; Capani, F.; Castaño, E.; Cuello, A. & Morelli, L. (2014). Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer’s disease. Frontiers in Behavioral Neuroscience, 8, 1–15.
https://doi.org/10.3389/fnbeh.2014.00321
Georganopoulou, D.; Chang, L.; Nam, J.; Thaxton, C.; Mufson, E.; Klein, W. & Mirkin, C. (2005). Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proceedings of the National Academy of Sciences, 102(7), 2273–2276.
https://doi.org/10.1073/pnas.0409336102
Gong, Y.; Chang, L.; Viola, K.; Lacor, P.; Lambert, M.; Finch, C.; Krafft, G. & Klein, W. (2003). Alzheimer’s disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proceedings of the National Academy of Sciences, 100(18), 10417–10422.
https://doi.org/10.1073/PNAS.1834302100
Habif, M.; Do Carmo, S.; Báez, M.; Colettis, N.; Cercato, M.; Salas, D.; Acutain, M.; Sister, C.; Berkowicz, V.; Canal, M.; González, T.; Cuello, A. & Jerusalinsky, D. (2021). Early Long-Term Memory Impairment and Changes in the Expression of Synaptic Plasticity-Associated Genes, in the McGill-R-Thy1-APP Rat Model of Alzheimer’s-Like Brain Amyloidosis. Frontiers in Aging Neuroscience, 12, 1–18.
https://doi.org/10.3389/fnagi.2020.585873
Holliger, P. & Hudson, P. (2005). Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 23(9), 1126–1136.
https://doi.org/10.1038/nbt1142
Huang, L.; Su, X. & Federoff, H. (2013). Single-Chain Fragment Variable Passive Immunotherapies for Neurodegenerative Diseases. International Journal of Molecular Sciences, 14(9), 19109–19127.
https://doi.org/10.3390/IJMS140919109
Iulita, M.; Allard, S.; Richter, L.; Munter., L.; Ducatenzeiler, A.; Weise, C.; Do Carmo, S.; Klein, W.; Multhaup, G. & Cuello, A. (2014). Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein: a multidimensional study. Acta Neuropathologica Communications, 2, 1–17.
https://doi.org/10.1186/2051-5960-2-61
Larson, M. & Lesné, S. (2012). Soluble Aβ oligomer production and toxicity. Journal of Neurochemistry, 120(SUPPL. 1), 125–139.
https://doi.org/10.1111/j.1471-4159.2011.07478.x
Leon, W.; Canneva, F.; Partridge, V.; Allard, S.; Ferretti, M.; DeWilde, A.; Vercauteren, F.; Atifeh, R.; Ducatenzeiler, A.; Klein, W.; Szyf, M.; Alhonen, L. & Cuello, A. (2010). A Novel Transgenic Rat Model with a Full Alzheimer’s-Like Amyloid Pathology Displays Pre-Plaque Intracellular Amyloid-β-Associated Cognitive Impairment. Journal of Alzheimer’s Disease, 20(1), 113–126.
https://doi.org/10.3233/JAD-2010-1349
Monnier, P.; Vigouroux, R. & Tassew, N. (2013). In Vivo Applications of Single Chain Fv (Variable Domain) (scFv) Fragments. Antibodies, 2(2), 193–208.
https://doi.org/10.3390/antib2020193
Motulsky, H. & Beutler, E. B. (1989). GraphPad Prism (version 8.0.2) [Software]. GraphPad Software, Inc.
Mucke, L. & Selkoe, D. (2012). Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harbor Perspectives in Medicine, 2(7), 1–18.
https://doi.org/10.1101/cshperspect.a006338
Nicoll, J.; Wilkinson, D.; Holmes, C.; Steart, P.; Markham, H. & Weller, R. (2003). Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nature Medicine, 9(4), 448–452.
Orgogozo, J.-M.; Gilman, S.; Dartigues, J.-F.; Laurent, B.; Puel, M.; Kirby, L.; Jouanny, P.; Dubois, B.; Eisner, L.; Flitman, S.; Michel, B.; Boada, M.; Frank, A. & Hock, C. (2003). Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology, 61(1), 46–54.
https://doi.org/10.1212/01.WNL.0000073623.84147.A8
Paxinos, G. & Watson, C. (2013). Rat brain in stereotaxic coordinates [7 ed.]. Elsevier.
Pimentel, L.; Allard, S.; Do Carmo, S.; Weinreb, O.; Danik, M.; Hanzel, C.; Youdim, M. & Cuello, A. (2015). The Multi-Target Drug M30 Shows Pro-Cognitive and Anti-Inflammatory Effects in a Rat Model of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 47(2), 373–383.
https://doi.org/10.3233/JAD-143126
Sebollela, A.; Cline, E.; Popova, I.; Luo, K.; Sun, X.; Ahn, J.; Barcelos, M.; Bezerra, V.; Lira e Silva, N.; Patel, J.; Pinheiro, N.; Qin, L.; Kamel, J.; Weng, A.; DiNunno, N.; Bebenek, A.; Velasco, P.; Viola, K.; Lacor, P.; Ferreira, S. & Klein, W. (2017). A human scFv antibody that targets and neutralizes high molecular weight pathogenic amyloid-β oligomers. Journal of Neurochemistry, 142(6), 934–947.
https://doi.org/10.1111/JNC.14118
Selkoe, D. & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608.
https://doi.org/10.15252/EMMM.201606210
Selles, M.; Fortuna, J.; Cercato, M.; Santos, L.; Domett, L.; Bitencourt, A.; Carraro, M.; Souza, A.; Janickova, H.; Azevedo, C.; Campos, H.; De Souza, J.; Alves-Leon, S.; Prado, V.; Prado, M.; Epstein, A.; Salvetti, A.; Longo, B.; Arancio, O.; Klein, W.; Sebollela, A.; De Felice, F.; Jerusalinsky, D. & Ferreira, S. (2022). AAV-mediated neuronal expression of a scFv antibody selective for Aβ oligomers protects synapses and rescues memory in Alzheimer models. Molecular Therapy, 31(2), 409–419.
https://doi.org/10.1016/j.ymthe.2022.11.002
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.; Quintero-Monzon, O.; Scannevin, R.; Arnold, H.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R. & Sandrock, A. (2016). The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 537(7618), 50–56.
https://doi.org/10.1038/nature19323
Tomiyama, T.; Matsuyama, S.; Iso, H.; Umeda, T.; Takuma, H.; Ohnishi, K.; Ishibashi, K.; Teraoka, R.; Sakama, N.; Yamashita, T.; Nishitsuji, K.; Ito, K.; Shimada, H.; Lambert, M.; Klein, W. & Mori, H. (2010). A mouse model of amyloid β oligomers: Their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. Journal of Neuroscience, 30(14), 4845–4856.
https://doi.org/10.1523/JNEUROSCI.5825-09.2010
Tran, T.; Kim, S.; Gallo, C.; Amaya, M.; Kyees, J. & Narayanaswami, V. (2013). Biochemical and biophysical characterization of recombinant rat apolipoprotein E: Similarities to human apolipoprotein E3. Archives of Biochemistry and Biophysics, 529(1), 18–25.
https://doi.org/10.1016/j.abb.2012.10.007
Van Dyck, C.; Swanson, C.; Aisen, P.; Bateman, R.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; Froelich, L.; Katayama, S.; Sabbagh, M.; Vellas, B.; Watson, D.; Dhadda, S.; Irizarry, M.; Kramer, L. & Iwatsubo, T. (2022). Lecanemab in Early Alzheimer’s Disease. The New England Journal of Medicine, 388(1), 9–21.
https://doi.org/10.1056/NEJMoa2212948
Velasco, P.; Heffern, M.; Sebollela, A.; Popova, I.; Lacor, P.; Lee, K.; Sun, X.; Tiano, B.; Viola, K.; Eckermann, A.; Meade, T. & Klein, W. (2012). Synapse-Binding Subpopulationsof Aβ OligomersSensitive to Peptide Assembly Blockers and scFv Antibodies. ACS Chemical Neuroscience, 3(11), 972–981.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 JOURNAL OF APPLIED COGNITIVE NEUROSCIENCE

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.