Determination of resistant capacity of post-tensioned beam-slab concrete bridges using ambient vibration testing: A case study of El Ramo bridge

Authors

  • Alvaro Viviescas Jaimes Universidad Industrial de Santander
  • Leonardo Herrera Rey Universidad Industrial de Santander
  • Sebastián Arenas Páez Universidad Industrial de Santander

DOI:

https://doi.org/10.17981/ingecuc.13.1.2017.03

Keywords:

post-tensioned concrete, ambient vibration tests, dynamic properties, resistant capacity

Abstract

To monitor the structural health of a bridge over its lifetime is necessary to have numerical models to, based on changes in the structural response of it, detect possible damage. For this reason and to deepen the understanding of the structural behavior of bridges on local roads of the Department of Santander, the research group in materials and structures -INME - UIS, takes a series of post-tensioned concrete bridges that were to be flooded by the impounding of the reservoir of Hidrosogamoso, becoming a full-scale laboratory. Among these is El Ramo bridge, which is a bridge beam and slab type, comprising a pair of post-tensioned concrete beams simply supported 31 meters. This bridge was made, firstly statical tests to characterize its deformation and others ambient vibration tests to identify its dynamic properties. These data were used as a calibration tool the respective numerical model, which served to evaluate the resistant capacity of the same, according to the criteria set by the Colombian norm existing bridges (CCP-2014).

Downloads

Download data is not yet available.

References

[1] Norma Colombiana de Diseño de Puentes (CCP-2014), Asociación Colombiana de Ingeniería Sísmica (AIS), 1a ed, 2014.

[2] H. Sohn, “Effects of environmental and operational variability on structural health monitoring,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 365, no. 1851, pp. 539–560, Feb. 2007.

[3] P. Paultre, J. Proulx y M. Talbot, “Dynamic Testing Procedures for Highway Bridges Using Traffic Loads,” J. Struct. Eng., vol. 121, no. 2, pp. 362–376, Feb. 1995.

[4] B. Peeters, “System identification and damage detection in civil engineering structures,” PhD thesis, Heverlee, Katholieke Universiteit Leuven, Belgium, 2000.

[5] S. W. Doebling, C. R. Farrar, M. B. Prime y D. W. Shevitz, Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. Los Alamos, NM, May 1996.

[6] H. Sohn, R. Farrar, M. Hemez, J. Czarnecki, D. Shunk, W. Stinemates y R.Nadler, “A review of Structural Health Monitoring Literature: 1996-2001”, Relatório Técnico, Los Alamos National Laboratory, Los Alamos, 2002.

[7] M. R. Corrêa y A. Campos Costa, Ensaios Dinâmicos da Ponte sobre o Rio Arade Pontes Atirantadas do Guadiana e do Arade (en portugués), ed. LNEC, 1992.

[8] C. Gentile y A. Saisi, “Dynamic-based F.E. Model Updating to Evaluate Damage in Masonry Towers”, Proceedings of the 4th International Seminar on Structural Analysis of Historical Constructions, Padova, Italy, Vol. 1, pp. 439-449, 2004.

[9] C. Gentile y N. Gallino, “Ambient vibration testing and structural evaluation of an historic suspension footbridge,” Advances in Engineering Software, 2007.

[10] H. Wenzel y D. Pichler, Ambient Vibration Monitoring. Chichester, England: J. Wiley and Sons Ltd., 2005. [11] J. M. W. Brownjohn, A. A. Dumanoglu, R. T. Severn y A. Blakeborough, “Ambient vibration survey of the Bosporus suspension bridge,” Earthq. Eng. Struct. Dyn., vol. 18, no. 2, pp. 263–283, Feb. 1989.

[12] Instituto Mexicano del Transporte, Evaluación de puentes mediante el análisis de vibraciones: Investigaciones recientes. Querétaro, México: Sanfandila, pp. 1-98, 1999. [13] C. Michel, P. Guéguen y P. Y. Bard, “Dynamic parameters of structures extracted from ambient vibration measurements: An aid for the seismic vulnerability assessment of existing buildings in moderate seismic hazard regions,” Soil Dyn. Earthq. Eng., vol. 28, no. 8, pp. 593–604, Aug. 2008.

[14] H. Wenzel and D. Pichler, Ambient Vibration Monitoring. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://doi.org/10.1002/0470024577.

[15] I. D. Gómez Araujo, Caracterización dinámica experimental de puentes de hormigón simplemente apoyados a partir de mediciones de vibración ambiental. Bucaramanga, Santander, Colombia, pp. 21-196, 2010.

[16] R. W. Clough y J. Penzien, Dynamics of structures. California, USA: Berkeley, pp.54-60, 1995.

[17] P. Mendes y S. Oliveira. “Análise dinâmica de estruturas: Utilização integrada de modelos de identificação modal e modelos de elementos finitos”. Laboratório Nacional de Engenharia Civil. Lisboa, Portugal, pp. 52-60, 2008.

[18] A. Cunha and E. Caetano, “Experimental Modal Analysis of Civil Engineering Structures,” 1st Int. Oper. Modal Anal. Conf., vol. 40, pp. 12–20, 2006.

[19] G. C. Franco Ariza, Calibración del modelo numérico existente de una edificación de valor histórico mediante mediciones de vibración ambiental. Caso de estudio: templo de San Francisco de Asís de Bucaramanga. Universidad Industrial de Santander – UIS. Bucaramanga, Santander, Colombia pp. 12-100, 2012.

[20] A. M. Agredo Chávez, S. J. Sarmiento Nova, and Á. Viviescas Jaimes, “Evaluación de la rigidez a flexión de puentes de viga-losa en concreto presforzado a partir de pruebas de carga. Caso de estudio: puente La Parroquia, vía La Renta - San Vicente de Chucurí,” Rev. UIS Ing., vol. 15, no. 2, pp. 14–36, Nov. 2016. https://doi.org/10.18273/revuin.v15n2-2016013

[21] Q. Pan, “System identification of constructed civil engineering structures and uncertainty”. Filadelfia, EEUU, pp. 180-211, diciembre de 2007.

[22] A. J. Felber, Development of a hybrid bridge evaluation system. Vancouver, Canadá: University of British Columbia, pp. 1-149, diciembre de 1993.

[23] Fondo Nacional de Caminos Vecinales. Superestructuras en concreto postensado. Colombia, 1993.

[24] F. Beer, R. Johnston, J. Dewolf y D. Mazurek. “Mecánica de materiales”, México: Mc. Graw Hill, pp. 2-17, 2009.

[25] R. Rochel Awad, Hormigón reforzado. Medellín, Colombia: Fondo Edtorial Universidad EAFIT, pp. 23, 2007.

Published

2017-01-01

How to Cite

Viviescas Jaimes, A., Herrera Rey, L., & Arenas Páez, S. (2017). Determination of resistant capacity of post-tensioned beam-slab concrete bridges using ambient vibration testing: A case study of El Ramo bridge. INGE CUC, 13(1), 32–41. https://doi.org/10.17981/ingecuc.13.1.2017.03

Most read articles by the same author(s)