Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental

Autores/as

DOI:

https://doi.org/10.17981/ingecuc.14.1.2018.05

Palabras clave:

Caracterización dinámica, salud estructural, monitoreo, vibración ambiental, puente viga cajón, ajuste del modelo numérico

Resumen

Introducción: En los últimos años, en Colombia hay un crecimiento en la construcción de puentes de grandes luces, en especial tipo viga cajón. Por la importancia de estas estructuras en la infraestructura del país, surge la necesidad de monitorear su integridad estructural, analizar su comportamiento a través de su ciclo de vida, detectar cambios causados por posibles daños y establecer planes de mantenimiento. Este monitoreo se puede realizar a través de la caracterización de las propiedades dinámicas de la estructura.

Objetivo: Este estudio presenta los resultados de la línea base para el monitoreo de la salud estructural del puente Gómez Ortiz. El artículo presenta y discute los resultados de la caracterización dinámica de la estructura y se describe el proceso de ajuste de un modelo numérico con base en los resultados experimentales.

Metodología: La caracterización dinámica se realizó utilizando la técnica experimental con medición de vibraciones ambientales. Para el procesamiento de datos se utilizaron cuatro técnicas diferentes, tales como selección de picos (PP), descomposición en el dominio de la frecuencia (FDD), descomposición en el dominio de la frecuencia mejorada (EFDD) e identificación del sub-espacio estocástico (SSI).

Resultados: En el estudio se obtuvo información experimental de las propiedades dinámicas del puente, tales como frecuencias fundamentales, modos de vibración y fracciones de amortiguamiento.

Conclusiones: Los resultados demostraron que las cuatro técnicas arrojan resultados similares, excepto para las fracciones de amortiguamiento, confirmando la incertidumbre de las técnicas experimentales para definir este parámetro.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alvaro Viviescas Jaimes, Universidad Industrial de Santander, Bucaramanga (Colombia).

Ingeniero Civil con distinción Cum Laude de la UIS. Doctor en Estructuras de la Universidad Politécnica de Cataluña (Barcelona, España). Es profesor Asociado en la Escuela de Ingeniería Civil e Investigador Asociado de Colciencias, adscrito al Grupo INME de la UIS. 

Julián Carrillo, Universidad Militar Nueva Granda, Bogotá (Colombia).

Profesor Titular del Departamento de Ingeniería Civil de la Universidad Militar Nueva Granada, UMNG. Es Doctor en Ingeniería Civil-Estructuras por la Universidad Nacional Autónoma de México, UNAM. Las áreas de interés son el diseño y rehabilitación sísmica de estructuras de concreto reforzado.

Laura Andrea Vargas Carvajal, Universidad Industrial de Santander, Bucaramanga (Colombia).

Laura A. Vargas received the M.Eng. degree in Structural Engineering from the Universidad Industrial de Santander (Bucaramanga, Colombia). His research interests include seismic engineering, dynamic characterization, ambient vibrations and modal analysis, reinforced concrete design and displacement based design. She is professor at Universidad Industrial de Santander's Civil Engineering School.

Citas

[1] H. Sohn, C. R. Farrar, F. Hemez y J. Czarnecki, “A Review of Structural Health Monitoring Literature 1996 – 2001,”
Third World Conf. Struct. Control, no. December, pp. 1–7, 2002.

[2] A. Cury, C. Cremona y J. Dumoulin, “Long-term monitoring of a PSC box girder bridge: Operational modal analysis, data normalization and structural modification assessment,” Mech. Syst. Signal Process., vol. 33, pp. 13–37, nov. 2012. https://doi.org/10.1016/j.ymssp.2012.07.005

[3] K. A. Kvåle, O. Øiseth y A. Rønnquist, “Operational modal analysis of an end-supported pontoon bridge,” Eng. Struct., vol. 148, pp. 410–423, oct. 2017. https://doi.org/10.1016/j.engstruct.2017.06.069

[4] R. M. Azzara, A. De Falco, M. Girardi y D. Pellegrini, “Ambient vibration recording on the Maddalena Bridge in Borgo a Mozzano (Italy): data analysis,” Ann. Geophys., vol. 60, no. 4 VO - 60, 2017.

[5] O. García Domínguez, A. G. Milián, Ayala, R. Reyes Greco y C. Álvarez Guillén, “Modelo estructural y medición de vibraciones dinámicas del puente ‘Fernando Espinosa’,” in XIII Congreso Nacional de Ingeniería Estructural, 2002, no. 55, pp. 849–860.

[6] P. Thomson, J. Marulanda C y J. Marulanda A, “Monitoreo de Salud Estructural,” Ing. y Compet., vol. 2, no. 2, pp. 40–46, 2000.

[7] E. Muñoz, F. Núñez, J. A. Rodríguez, A. Ramos, C. Otálora y P. Universidad, “Vulnerabilidad sísmica y capacidad de carga de un puente en acero basado en confiabilidad estructural. Seismic vulnerability and load carrying capacity studies of a steel bridge based on structural reliability,” Rev. Ing. Construcción, vol. 23, pp. 125–144, 2008.

[8] P. Thomson y J. Marulanda, “Sistema de MSE del Viaducto Pereira-Dos Quebradas,” in IV Semana de la Ingeniería, 2005.

[9] J. Marulanda, P. Thomson, J. M. Caicedo, S. J. Dyke y A. Orozco, “Implementation of a Modal Identification Methodology on the Pereira-Dos Quebradas Cable-Stayed Bridge,” in 16th ASCE Engineering Mechanics Conference, 2003, pp. 1–11.

[10] W. J. Carrillo León, “Estimación de los periodos naturales de vibración de viviendas de baja altura con muros de concreto,” Cienc. e Ing. Neogranadina, vol. 19, pp. 39–54, 2009. https://doi.org/10.18359/rcin.309

[11] J. Carrillo y S. M. Alcocer, “Simplified equation for estimating periods of vibration of concrete wall housing,” Eng. Struct., vol. 52, pp. 446–454, 2013. https://doi.org/10.1016/j.engstruct.2013.03.011

[12] P. Omenzette et al., “Forced and Ambient Vibration Testing of Full Scale Bridges,” Earthq. Comm. Res. Found., no. oct., 2013-2014.

[13] C. P. Lamarche, S. Mousseau, P. Paultre y J. Proulx, “A comparison of Ambient and Forced-Vibration Testing of a Full-Scale Concrete Structure,” in 22nd International Modal Analysis Conference IMA-XXII, 2004.

[14] S. Au, Operational Modal Analysis. Singapore: Springer Nature, 2017. https://doi.org/10.1007/978-981-10-4118-1

[15] I. Gómez Araujo, E. Maldonado Rondón y G. Chio Cho, “Pruebas de Vibración Ambiental en Puentes,” UIS Ing., vol. 9, no. 1, pp. 55–68, 2010.

[16] INGETEC, “Planos ‘As Built’ Puente Guillermo Gómez Ortiz,” Santander, Colombia, 2014.

[17] J. Bien, “Modelling of structure geometry in Bridge Management Systems,” Arch. Civ. Mech. Eng., vol. XI, no. 3, 2011.

[18] M. C. Corredor y C. Castellanos, “Calibración del modelo numérico de puentes viga cajón en concreto, utilizando ensayos de vibración ambiental. Caso de estudio: Nuevo Puente Gómez Ortiz. Bucaramanga,” 2015.

[19] MIDAS Information Technology Co Ltda, “Online manual. Civil Structure Design,” 2015.

[20] C. C. Rangel y J. A. Silva de Carvalho, “Evaluación del impacto de las alteraciones climáticas en un puente de concreto preesforzado,” 2016.

[21] W. Kornkassem, D. A. Foutch y J. H. Long, “Seismic Behaviour of Pile-Supported Bridges,” p. 275, University of Illinois at Urbana-Champaign, 2001.

[22] W. X. Ren, W. Zatar y I. E. Harik, “Ambient vibrationbased seismic evaluation of a continuous girder bridge,” Eng. Struct., vol. 26, no. 5, pp. 631–640, 2004.

[23] L. A. Vargas Carvajal, “Propuesta de plan de monitoreo del comportamiento dinámico para la salud estructural del nuevo puente Gómez Ortiz en la vía Girón-Zapatoca,” Universidad Industrial de Santander, 2016.

[24] A. Dall Asta y L. Dezi, “Prestress Force Effect on Vibration Frequency of Concrete Bridges,” J. Struct. Eng., pp. 458–460, 1996.

[25] E. Hamed y Y. Ã. Frostig, “Natural frequencies of bonded and unbonded prestressed beams – prestress force effects,” J. Sound Vib., vol. 295, pp. 28–39, 2006.

[26] Structural vibration solutions, “ARTeMIS,” Denmark. http://www.svibs.com/index

[27] T. M. Inc, “Matlab,” The MathWorks Inc, Massachusetts, 2011.

[28] M. Döhler, P. Andersen y L. Mevel, “Operational Modal Analysis using a Fast-Stochastic Subspace Identification Method” in Proceedings of the 30th International Modal Analysis Conference (IMAC) Jacksonville, Florida USA, 2012.

[29] R. Brincker y P. Andersen, “Understanding Stochastic Subspace Identification” in Proceedings of the 24th International Modal Analysis Conference (IMAC), St. Louis, Missouri, 2006.

[30] R. Brincker, P. Andersen y N. Jacobsen, “Automated Frequency Domain Decomposition for Operational Modal Analysis,” pp. 1–7. in Proceedings of The 25th International Modal Analysis Conference (IMAC), Orlando, Florida, 2007.

[31] R. Brincker, L. Zhang y P. Andersen, “Modal Identification from Ambient Responses using Frequency Domain Decomposition” in Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas, pp.625-630,2000.

[32] I. D. Gómez Araujo, “Caracterización dinámica experimental de puentes de hormigón simplemente apoyados a partir de mediciones de vibración ambiental,” Universidad Industrial de Santander, 2010.

[33] P. D. Welch, “The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” in IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 2, pp. 70–73, 1967. https://doi.org/10.1109/TAU.1967.1161901

[34] A. J. Felber, “Development of a Hybrid Bridge Evaluation System,” The University of British Columbia, Ph.D. Thesis, University of British Columbia, Canada, 1993

[35] R. Lyons, Understanding digital signal processing. Michigan: Pearson, 2011.

[36] M. Paz, Dinámica estructural: Teoría y Cálculo. Barcelona: Editorial Reverté S.A, 1992.

[37] C. Rainieri y G. Fabbricino, Operational Modal Analysis of Civil Engineering Structures. New York: Springer science + business, 2014.

[38] C. Lanczos, “The Lanczos Method Evolution and Application,” vol. 12, pp. 197–198, 2003.

[39] N. Gastinel, Análisis numérico lineal. Barcelona: Editorial Reverté, S.A, 1975.

[40] R. J. Allemang y D. L. Brown, “A Correlation Coefficient for Modal Vector Analysis,” in Proceedings of the 1st International Modal Analysis Conference. pp. 110-116. Orlando, FL, 1982.

[41] E. C. Chu, Discrete and continuous fourier transforms: analysis, applications and fast algorithms. CRC Press, 2008.

[42] R. Boroschek y F. Hernández, “Corrección de sobreestimación del amortiguamiento en el método de ancho de banda del espectro de potencia,” in Congreso Chileno de Sismología e Ingeniería Antisísmica, 2010.

[43] J. D. Stevenson, “Structural Damping Values as a Function of Dynamic Response Stress and Deformation Levels,” Nucl. Eng. Des., vol. 60, pp. 211–237, 1980. https://doi.org/10.1016/0029-5493(80)90238-1

[44] G. Martínez, P. Roca, J. Caselles, J. Clapes y A. H. Barbat, “Determinación experimental y analítica de las propiedades dinámicas para la Catedral de Mallorca,” in Congreso Nacional de Ingeniería Sísmica, 2007, pp. 1–8.

[45] X. Chen, P. Omenzetter y S. Beskhyroun, “Calibration of the finite element model of a twelve-span prestressed concrete bridge using ambient vibration data,” 7th Eur. Work. Struct. Heal. Monit., EWSHM 2014, pp. 1388–1395, 2014.

[46] C. Farrar et al., “Variability of Modal Parameters Measured on the Alamosa Canyon Bridge,” in Proceedings of the 15th International Modal Analysis Conference., p. 257. 1997.

[47] M. Wahab y G. De Roeck, “Effect of Temperature on Dynamic System Parameters of a Highway Bridge,” Struct. Eng. Int., pp. 266–270.

Descargas

Publicado

2018-01-01

Cómo citar

Viviescas Jaimes, A., Carrillo, J., & Vargas Carvajal, L. A. (2018). Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental. Inge Cuc, 14(1), 52–65. https://doi.org/10.17981/ingecuc.14.1.2018.05

Número

Sección

ARTÍCULOS