Determination of the level of user perception through sentiment analysis studies in the context of marketing

Authors

  • Gabriel Elias Chanchi Universidad de Cartagena
  • Luis Freddy Muñoz Sanabría Fundación Universitaria de Popayán
  • Luz Marina Sierra Martínez Universidad del Cauca

DOI:

https://doi.org/10.17981/ingecuc.18.2.2022.19

Keywords:

affective computing, perception level, opinion mining, polarity, sentiment analysis

Abstract

Introduction: The comments made by the clients of the companies in the social networks and electronic commerce portals about products and services offered by them, not only allow the companies to determine the perception of the clients for decision making at the marketing level. They serve as a reference for other customers to make decisions before buying a product. One of the techniques derived from natural language processing and affective computing that allows determining the value of an opinion is sentiment analysis.

Objective: To determine a quantitative indicator of the level of perception through a mathematical equation that involves the polarity value (positive, negative, neutral) of an opinion.

Method: This work focused on the automation of the opinion mining process and the determination of the level of perception through the identification of the most used and suitable libraries for the development of this work; the identification of mathematical equations to determine the level of perception; the implementation of a tool to automate the process; and the verification of its usefulness through a case study.

Results:  By means of a mathematical equation that involves the three polarities of an opinion, obtaining an automated tool in Python language, which makes use of the Paralleldots library.

Conclusions: The tool developed allows opinion mining studies to be carried out in which the added value is the estimation of a level of perception by opinion and in general. The proposed approach is intended to serve as a reference to be replicated and extrapolated in different application contexts in addition to marketing.

Downloads

Download data is not yet available.

Author Biographies

Gabriel Elias Chanchi, Universidad de Cartagena

Profesor de la Facultad de Ingeniería de la Universidad de Cartagena

Luis Freddy Muñoz Sanabría, Fundación Universitaria de Popayán

Profesor de la Faculta de Ingeniería de la Fundación Universitaria de Popayán

Luz Marina Sierra Martínez, Universidad del Cauca

Profesora de la Facultad de Ingeniería Electrónica y Telecomunicaciones de la Universidad del Cauca

References

Baldasarri, “Computación Afectiva: tecnología y emociones para mejorar la experiencia de usuario”, Rev Inst Fac Informática, no. 3, pp. 14–15, Jun. 2016. Disponible en http://sedici.unlp.edu.ar/handle/10915/53441

G. Chanchí-Golondrino, C. Hernández-Londoño y M. Ospina-Alarcón, “Aplicación de la computación afectiva en el análisis de la percepción de los asistentes a una feria de emprendimiento del SENA,” Rev Cient, vol. 44, no. 2, pp. 215–227, Ene. 2021. https://doi.org/10.14483/23448350.18971

M. Pouromid, A. Yekkehkhani, M. Oskoei & A. Aminimehr, “ParsBERT Post-Training for Sentiment Analysis of Tweets concerning Stock Market,” presented at 26th International Computer Conference, Computer Society of Iran, CSICC, THR, IR, 3-4 Mar. 2021. https://doi.org/10.1109/CSICC52343.2021.9420569

H. Lin, T. Wang, G. Lin, S. Cheng, H. Chen & Y. Huang, “Applying sentiment analysis to automatically classify consumer comments concerning marketing 4Cs aspects,” Appl Soft Comput, vol. 97, pp. 1–10, Dec. 2020. https://doi.org/10.1016/J.ASOC.2020.106755

N. Srivats Athindran, S. Manikandaraj & R. Kamaleshwar, “Comparative Analysis of Customer Sentiments on Competing Brands using Hybrid Model Approach,” presented at 3rd International Conference on Inventive Computation Technologies, ICICT, CBE, IN, 15-16 Nov. 2018. https://doi.org/10.1109/ICICT43934.2018.9034283

F. Khan, U. Qamar & S. Bashir, “eSAP: A decision support framework for enhanced sentiment analysis and polarity classification,” Inf Sci, vol. 367-368, pp. 862–873, Nov. 2016. https://doi.org/10.1016/J.INS.2016.07.028

P. Mukherjee, Y. Badr, S. Doppalapudi, S. Srinivasan, R. Sangwan & R. Sharma, “Effect of Negation in Sentences on Sentiment Analysis and Polarity Detection,” Procedia Comput Sci, vol. 185, pp. 370–379, Jan. 2021. https://doi.org/10.1016/J.PROCS.2021.05.038

A. Moreno-Ortiz & J. Fernández-Cruz, “Identifying Polarity in Financial Texts for Sentiment Analysis: A Corpus-based Approach,” Procedia-Soc Behav Sci, vol. 198, pp. 330–338, Jul. 2015. https://doi.org/10.1016/J.SBSPRO.2015.07.451

G. Chanchí y A. Cordoba, “Análisis de emociones y sentimientos sobre el discurso de firma del acuerdo de paz en Colombia,” RISTI, no. E22, pp. 95–107, Mar. 2019. Available: http://www.risti.xyz/issues/ristie22.pdf

G. Chanchí, W. Campo y L. Sierra, “Estudio del atributo satisfacción en pruebas de usabilidad, mediante técnicas de análisis de sentimientos,” RISTI, no. E23, pp. 340–352, May. 2019. Disponible en https://search.proquest.com/openview/dc9c3ac1b6b131619f5c2c7bfa97c1c5/1.pdf?pq-origsite=gscholar&cbl=1006393

V. Gil, “Análisis de sentimientos sobre el impacto social de proyectos de vivienda en América Latina: el caso un TECHO para mi país (Colombia),” Rev. Espac., vol. 39, no. 44, pp. 30-37, May. 2018. Available: http://www.revistaespacios.com/a18v39n44/a18v39n44p30.pdf

J. García, P. Henríquez-Coronel, J. Pincai y J. Herrera-Tapia, “Analítica de Twitter para el estudio de las emociones primarias durante el terremoto de México 2017,” RISTI, no. E19, pp. 479–492, Dic. 2018. Disponible en https://www.proquest.com/openview/841aa93ba3c3df451770cecf46615e88/1?pq-origsite=gscholar&cbl=1006393

C. Arcila-Calderón, F. Ortega-Mohedano, J. Jiménez-Amores y S. Trullenque, “Análisis supervisado de sentimientos políticos en español: clasificación en tiempo real de tweets basada en aprendizaje automátic­o,” Prof Inf, vol. 26, no. 5, pp. 973–982, Mar. 2017. https://doi.org/10.3145/epi.2017.sep.18

V. Ikoro, M. Sharmina, K. Malik & R. Batista-Navarro, “Analyzing Sentiments Expressed on Twitter by UK Energy Company Consumers,” presented at 5 International Conference on Social Networks Analysis, Management and Security, ICSNAMS, VAL, ES, 15-18 Oct. 2018. https://doi.org/10.1109/SNAMS.2018.8554619

S. Ainin, A. Feizollah, N. Anuar & N. Abdullah, “Sentiment analyses of multilingual tweets on halal tourism,” Tour Manag Perspect, vol. 34, pp. 1-8, Jan. 2019. https://doi.org/10.1016/J.TMP.2020.100658

M. Hung, E. Lauren, E. Hon, W. Birmigham, J. Xu, S. Su, S. Hon, J. Park, P. Dang & M. Lipsky, “Social network analysis of COVID-19 sentiments: Application of artificial intelligence,” J Med Internet Res, vol. 22, no. 8, pp. 1–13, Aug. 2020. https://doi.org/10.2196/22590

A. Reyes-Menendez, J. Saura & F. Filipe, “Marketing challenges in the #MeToo era: gaining business insights using an exploratory sentiment analysis,” Heliyon, vol. 6, no. 3, pp. 1–13, Jul. 2019. https://doi.org/10.1016/J.HELIYON.2020.E03626

K. Pratt, Design Patterns for Research Methods: Iterative Field Research, AAAI, May, 2020. Available from http://kpratt.net/wp-content/uploads/2009/01/research_methods.pdf

S. Rao, N. Monica, P. Nikhila, T. Tejasri & B. Maram, “Positivity Calculation using Vader Sentiment Analyser”, IJAER, vol. 4, no. 3, pp. 13–17, Mar. 2020. Available from http://ijeais.org/wp-content/uploads/2020/3/IJAER200303.pdf

E. Jacobs, “Mood: Harry Potter,” Erika Jacobs, Jul. 28, 2019. [Online]. Available: https://erika-jacobs.com/post/mood-harry-potter/

Published

2022-11-09

How to Cite

Chanchi, G. E., Muñoz Sanabría, L. F., & Sierra Martínez, L. M. (2022). Determination of the level of user perception through sentiment analysis studies in the context of marketing. INGE CUC, 18(2), 238–248. https://doi.org/10.17981/ingecuc.18.2.2022.19

Most read articles by the same author(s)