Mold Injection Simulation based on Finite Volume Method (FVM)

Authors

DOI:

https://doi.org/10.17981/ingecuc.16.2.2020.08

Keywords:

finite volume method FVM, mold injection, cooling times, product life cycle management PLM, design of experiments, finite elements

Abstract

Introduction— One of the main concerns in the mold injection industry is to ensure efficient material processing and procurement of products at reasonable costs that reflect solid economies of scales for large production series. Cooling time is an influential and decisive variable for the efficiency of these series, under a certain temperature condition, it increases along with the thickness of the piece. Therefore, for a certain thickness, a low mold temperature and a high piece extraction temperature have a considerable influence on the reduction of cooling time, which constitutes a large span of the process cycle time: between 80 % and 85%. In this work, the injection molding process is simulated to explore the temperature distribution and material filling process of a mold designed to make ‘ear tags’, which are used for the visual control of cattle.

Objetive— The main goal is to identify the essential variables in the process (time process, injection and packaging pressures, clamping forces and injection velocity), as well as their influence on compression times and temperature distribution.

Methodology— For the above, an Experiment Design methodology (DOE) is stablished based on the 2k factorial design, based on simulations based on the finite volume method (FVM).

Results— This DOE, adapted to the numerical results, reveals as a fundamental result of this work, the study variables that are inherent in the process, in addition to achieving its characterization.

Conclusions— The results allowed studying the temperature behavior distribution in the mold, identifying as initial variables to consider in the experimentation: the initial mold temperature and the interactions between the cooling times-packaging and cooling times-initial mold temperature.

Downloads

Download data is not yet available.

Author Biographies

Carlos Andres Vargas Isaza, Español

Ingeniero Mecánico titulado de la Universidad Pontificia Bolivariana, especialista en procesos de transformación de plástico y caucho de la Universidad EAFIT, 13 años de experiencia profesional,
en el sector del plástico y caucho, desarrollando proyectos de diseño de moldes de inyección,
diseño y desarrollo de productos plásticos, docencia en materiales poliméricos y su procesamiento.
Experiencia en desarrollos de proyectos de productividad y competitividad, gestión de calidad y
energía. Competencias para la ejecución y gestión de proyectos mencionados empleando
herramientas de software CAE, gestión de proyectos, lenguajes de programación y simulación de
procesos.

Wilfredo Montealegre Rubio, Universidad Nacional de Colombia. Medellín, (Colombia)

Ingeniero Mecánico de la Universidad de Ibagué (año 2000), con maestría (año 2005) y doctorado (año 2010) en Ingeniería Mecánica de la Universidade de São Paulo. Actualmente se desempeña como profesor asociado de la Universidad Nacional de Colombia, sede Medellín. Ha sido autor de mas de 35 productos académicos y revisor de diferentes revistas científicas internacionales como Sensors (Basel), DYNA, Mechanics Research Communications, Engineering Computations, Latin American Journal of Solids and Structure, Ultrasonics, Journal of Intelligent Materials Systems and Structures y Mechanism and Machine Theory. Tiene experiencia en Ingeniería Mecánica con énfasis en el diseño de máquinas, actuando principalemente  en los siguientes temas: Topology optimization, Finite elements, MEMS, Piezoelectric Materials, Ultrasonics applications, y Functionally Graded Materials

References

M. E. Cendón Vásquez, Introducción al método de los volúmenes finitos. SCQ, ES: USC, 2008.

J. Gong, L. Xuan, B. Ying, & H. Wang, “Thermoelastic analysis of functionally graded porous materials with temperature-dependent properties by a staggered finite volume method,” Compos. Struct., vol. 224, no. 947, pp. e111071, Sep. 2019. https://doi.org/10.1016/j.compstruct.2019.111071

N. S. Myers & L. Kramer, “Simulation and experimental verification of two cavity balance in injection molding,” in Advances in Powder Metallurgy and Particulate Materials2019, NJ: MPIF, pp. 212–224 , 2020 .

G. R. Berger, D. Zorn, W. Friesenbichler, F. Bevc, & C. J. Bodor, “Efficient cooling of hot spots in injection molding. A biomimetic cooling channel versus a heat-conductive mold material and a heat conductive plastics,” Polym. Eng. Sci. , vol. 59, no. s2 , pp. E180–E188, 2019. https://doi.org/10.1002/pen.25024

R. Schiffers, M. Janßen, J. P. Siepmann, J. Wortberg, & F. A. Heinzler, “Using 3D injection molding simulation to explain emerging two- and three-dimensional surface structures of ABS and PC/ABS parts within the process of electroplating on plastics,” AIP Conf Proc, vol. 2065, pp. 30002-1–30002-5, 2019. https://doi.org/10.1063/1.5088260

S. Kumar & A. K. Singh, “Volumetric shrinkage estimation of benchmark parts developed by rapid tooling mold insert,” Sadhana - Acad. Proc. Eng. Sci., vol. 45, no. 1, pp. 1–9, May. 2020. https://doi.org/10.1007/s12046-020-01373-7

Moldex 3D, “¿Qué es Moldex 3D? - Moldex3D,” Moldex3d.es, [online . Available: http://www.moldex3d.es/moldex3d-software-simulacion-inyeccion-materiales-plasticos/que-es-moldex-3d/ [Accessed: 10-Aug-2020.

J. Pedro, B. Ramôa, J. M. Nóbrega, & C. Fernandes, “Verification and validation of openInjMoldSim, an open-source solver to model the filling stage of thermoplastic injection molding,” Fluids, vol. 5, no. 2, pp. 1–24, May. 2020. https://doi.org/10.3390/fluids5020084

Y. Niño, Metodo de volumenes finitos. (Sem. Primavera 2002). Modelacion numerica en ingenieria hidraulicay ambiental. CL: Uchile. Available: https://www.u-cursos.cl/ingenieria/2008/2/CI71D/1/material_docente/bajar?id=200975

J. Osses, “El método de volúmenes finitos,” Tecnología de Simulación, Fluidodinámica, 2016.

I. Sokolova, M. G. Bastisya, & H. Hajibeygi, “Multiscale finite volume method for finite-volume-based simulation of poroelasticity,” J. Comput. Phys., vol. 379, pp. 309–324, Feb. 2019. https://doi.org/10.1016/j.jcp.2018.11.039

M. Moayyedian, K. Abhary, & R. Marian, “Elliptical cross sectional shape of runner system in injection mold design,” Int. J. Plast. Technol., vol. 20, no. 2, pp. 249–264, Jul. 2016. https://doi.org/10.1007/s12588-016-9153-4

S. Kitayama and S. Natsume, “Multi-objective optimization of volume shrinkage and clamping force for plastic injection molding via sequential approximate optimization,” Simul. Model. Pract. Theory, vol. 48, pp. 35–44, Nov. 2014. https://doi.org/10.1016/j.simpat.2014.07.004

S. Hashimoto, S. Kitayama, M. Takano, Y. Kubo, & S. Aiba, “Simultaneous optimization of variable injection velocity profile and process parameters in plastic injection molding for minimizing weldline and cycle time,” J. Adv. Mech. Des. Syst. Manuf., vol. 14, no. 3, pp. JAMDSM0029, 2020. https://doi.org/10.1299/jamdsm.2020jamdsm0029

S. Hua, “Experimental and numerical investigation of jetting phenomenon in injection molding,” J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 4, pp. 1–13, Mar. 2020. https://doi.org/10.1007/s40430-020-02278-6

T. Wöhner, A. Islam, H. N. Hansen, G. Tosello, & B. R. Whiteside, “Blister formation in film insert moulding,” Micromachines, vol. 11, no. 4, pp. 1–11, Apr. 2020. https://doi.org/10.3390/mi11040424

W. Z. Nie & T. P. Shi, “Prediction of plastic injection shrinkage ratio using grey theory,” Adv. Mater. Res., vol. 1028, pp. 96–104, Sep. 2014. https://doi.org/10.4028/www.scientific.net/AMR.1028.96

Q. Li, L. Li, X. Si, & W. Rongji, “Modeling the effect of injection molding process parameters on warpage using neural network theory,” J. Macromol. Sci. Part B Phys., vol. 54, no. 9, pp. 1066–1080, Sep. 2015. https://doi.org/10.1080/00222348.2015.1068680

J. H. Han & Y. C. Kim, “Study on Effects of Mold Temperature on the Injection Molded Article,” Arch. Metall. Mater., vol. 62, no. 2, pp. 1271–1274, 2017. https://doi.org/10.1515/amm-2017-0191

G. Zheng, W. Guo, Q. Wang, & X. Guo, “Influence of processing parameters on warpage according to the Taguchi experiment,” J. Mech. Sci. Technol., vol. 29, no. 10, pp. 4153–4158, Oct. 2015. https://doi.org/10.1007/s12206-015-0909-0

R. Surace, V. Bellantone, G. Trotta, & I. Fassi, “Replicating capability investigation of micro features in injection moulding process,” J. Manuf. Process., vol. 28, part. 1, pp. 351–361, Aug. 2017. https://doi.org/10.1016/j.jmapro.2017.07.004

Y. Chen & J. Zhu, “Warpage analysis and optimization of thin-walled injection molding parts based on numerical simulation and orthogonal experiment,” IOP Conf. Ser. Mater. Sci. Eng, vol. 688, no. 3, pp. 1–3, 2019. https://doi.org/10.1088/1757-899X/688/3/033027

C. M. Lin & W. C. Chen, “Optimization of injection-molding processing conditions for plastic double-convex Fresnel lens using grey-based Taguchi method,” Microsyst. Technol., vol. 26, no. 8, pp. 2575–2588, Mar. 2020. https://doi.org/10.1007/s00542-020-04798-6

Asteco, “Productos - Duraluminio 7075,” Asteco.com. Available: https://www.asteco.com.co/images/imagenes/productos/aceros/acerosparamoldes/fichastecnicas/7075.pdf

Petroquim, “PP Homopolímero PH1310_ Plassol,” Petroquim.cl, Dic. 2012. Available: http://www.petroquim.cl/wp-content/uploads/2012/12/FT-PH1310-Dic-2012.pdf

W. Pötsch, G., Michaeli, Injection Molding 2E. An Introduction. Ltpy. Twp, Oh., USA: Hanser Gardner Publications, 2007 .

S. Sánchez, I. G. Yáñez, & O. S. Rodríguez, Moldeo por inyección de termoplásticos. CDMX, MX: LIMUSA, 2005.

J. M. Almarrán, “Diseño y fabricación de un molde para inyección en Plástico,” Trabajo de grado, Dpto. Ing. Dis. Mec., ICAI, Md., Es., May. 2014.

F. L. Osswald Tim, Menges Georg, Flórez Jairo, Ciencia de los polímeros para ingenieros. Cuc., Co.: Editorial Guaduales Limitada, 2010.

D. C. Montgomery, Design and analysis of experiments. 5th ed., NY., USA: Hardcover, 2001.

C. Vargas, J. Sierra, J. Posada, & J. Botero, “Analysis and modeling of simulated residual stress of mold injected plastic parts by using robust correlations,” Rev. Mater., vol. 22, no. 4, pp. 1–13, Oct. 2017. https://doi.org/10.1590/s1517-707620170004.0228

A. ÖSTERGREN, “Prediction of residual stresses in injection moulded parts,” Master´s Thesis in the Applied Mechanics, Dpt. Appl. Mech., CUT, Gbg., Se., 2013. Available: https://publications.lib.chalmers.se/records/fulltext/179639/179639.pdf

J. A. P. de Oliveira, “Análise numérica de tensões induzidas pelo escoamento não isotérmico de um polímero no preenchimento de cavidades de paredes finas,” Grau de Doutor, dpto. eng. qui, UFRGS, RS, BR, 2012. Available: https://lume.ufrgs.br/handle/10183/75762

A. Nita & E. Oanta, “Improving the quality of the molded polymeric parts by reducing the residual stress,” 2nd International Conference on Manufacturing Engineering, Quality and Production Systems, MEQAOS10, Cnd., Ro., pp. 77–82, Sep. 3-5, 2010. Available: http://www.wseas.us/e-library/conferences/2010/Constantza/MEQAPS/MEQAPS-14.pdf

C. Vargas, J. Sierra, J. Posada, and J. Botero, “Analysis and modeling of simulated residual stress of mold injected plastic parts by using robust correlations,” Rev. Mater., vol. 22, no. 4, pp. 1–13, Oct. 02, 2017. https://doi.org/10.1590/s1517-707620170004.0228

A. Guevara-Morales and U. Figueroa-López, “Residual stresses in injection molded products,” J. Mater. Sci., vol. 49, no. 13, pp. 4399–4415, Mar. 2014. https://doi.org/10.1007/s10853-014-8170-y

Published

2020-08-31

How to Cite

Benitez Lozano, A. J., Vargas Isaza, C. A., & Montealegre Rubio, W. (2020). Mold Injection Simulation based on Finite Volume Method (FVM). INGE CUC, 16(2), 119–130. https://doi.org/10.17981/ingecuc.16.2.2020.08

Most read articles by the same author(s)