Numerical analysis of the thermal behavior of a naca-type automotive disc brake
DOI:
https://doi.org/10.17981/ingecuc.17.1.2021.03Keywords:
CFD, FEA, NACA, solidworks, self-ventilation, fluidsAbstract
Introduction: The braking system of a car must work safely and predictably in any circumstance, which implies having a stable level of friction, in any condition of temperature, humidity, and salinity of the environment. For the correct design and operation of the brake discs, it is necessary to consider different aspects, such as geometry, type of material, mechanical resistance, maximum temperature, thermal deformation, resistance to cracking, among others.
Objective: The objective of this study was to analyze the behavior of temperature and velocity of heat flow in the disc brake ventilation duct with ventilation pillars type NACA 66-29 using computational fluid dynamics (CFD).
Methodology: This is the design software SolidWorks simulations for analyzing the behavior of the fluid (air) in terms of speed and heat dissipation capacity.
Results: The numerical results for the heat flow through the ventilation channels are compared with the results mathematically. The numerical results that the discs performed well under severe operating conditions (80 km/h and an ambient temperature of 12°C). It is very important in the design of the brake disc to select the appropriate geometry, particularly the number and cross-section of the ducts, and the type of material.
Conclusions: The numerical methods offer advantages to select the geometry and the material and the flow mode of the fluid to optimize the heat dissipation to provide the maximum performance for the maintained components.
Downloads
References
R. A. García-León & E. Flórez-Solano, “Estudio analítico de la trasferencia de calor por convección que afectan los frenos de disco ventilados,” Tecnura, vol. 20, Edición Especial, pp. 15–30, 2016.
R. A. García-León, E. Flórez-Solano, & C. Acevedo-Peñaloza, Análisis termodinámico en frenos de disco, BO, CO: ECOE, 2018.
R. A. García-León, “Evaluación del comportamiento de los frenos de disco de los vehículos a partir del análisis de la aceleración del proceso de corrosión,” Tesis pregrado, dpto Ing Mec, UFPSO, OCaña, CO, 2014.
F. Talati & S. Jalalifar, “Investigation of heat transfer phenomena in a Ventilated Disk Brake Rotor with Straight radial rounded vanes,” Appl Sci, vol. 20, no. 1, pp. 3583–3592, 2008. https://doi.org/10.3923/jas.2008.3583.3592
R. A. García, M. A. Acosta & E. Flórez, “Análisis del comportamiento de los frenos de disco de los vehículos a partir de la aceleración del proceso de corrosión,” Tecnura, vol. 19, no. 45, pp. 53–63, 2015. https://doi.org/10.14483/udistrital.jour.tecnura.2015.3.a04
R. A. García-León & E. Flórez Solano, “Estudio analítico de la transferencia de calor por convección que afectan los frenos de disco ventilados,” Tecnura, vol. 20, Ed Especial, pp. 15–30, 2016.
S. Hirasawa, T. Kawanami & K. Shirai, “Numerical analysis of convection heat transfer on high-temperature rotating disk at bottom surface of air flow duct,” presented at IMECE, ASME, Mtl, QC, CA, 14-20 Nov. 2014. https://doi.org/10.1115/IMECE2014-36142
D. Porta, C. Echeverría, A. Aguayo, J. E. H. Cardoso & C. Stern, “Calibration of a Background Oriented Schlieren (BOS),” Recent Advances in Fluid Dynamics with Environmental Applications, J. Klapp, L. Di G. Sigalotti, A. Medina, A. López & G. Ruiz-Chavarría (eds), BSL: Springer, pp. 115–124, 2016.
L. S. Bocîi, “The influence of braking time on heat flow through the friction surfaces of the friction elements of disk brakes for railway vehicles,” Transport, vol. 26, no. 1, pp. 75–78, Apr. 2011. https://doi.org/10.3846/16484142.2011.563494
R. A. García & E. Pérez Rojas, “Analysis of the amount of heat flow between cooling channels in three vented brake discs,” Ing Univ, vol. 21, no. 1, pp. 71–96, 2017. https://doi.org/10.11144/Javeriana.iyu21-1.aahf
H. B. Yan, S. S. Feng, X. H. Yang & T. J. Lu, “Role of cross-drilled holes in enhanced cooling of ventilated brake discs,” Appl Therm Eng, vol.91, pp. 318–333, Dec. 2015. https://doi.org/10.1016/j.applthermaleng.2015.08.042
R. A. García-León & E. Flórez-Solano, “Dynamic analysis of three autoventilated disc brakes,” Ing Investig, vol.37, no. 3, pp. 102–114, 2017. https://doi.org/10.15446/ing.investig.v37n3.63381
C. A. Jimenez, J. E. Rivera, J. M. Casillas, G. J. Gutiérrez, A. Medina & J. L. Arciniega, “Medición del campo de velocidad en la succión y descarga de un disco de freno automotriz con pilares de ventilación tipo gota, por medio de velocimetría por imágenes de partículas (VIP),” Rev. Congr. Iberoam. Ing. Mecánica, no. 1, pp. 1–9, 10-13 Nov. 2015.
R. A. García-León, R. D. Echavez-Díaz & E. Flórez-Solano, “Análisis termodinámico de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209,” INGECUC, vol. 14, no. 2, pp. 9–18, 2018. https://doi.org/10.17981/ingecuc.14.2.2018.01
C. Senatore, M. Wulfmeier, I. Vlahinić, J. Andrade & K. Iagnemma, “Design and implementation of a particle image velocimetry method for analysis of running gear–soil interaction,” J Terramechanics, vol. 50, no. 5-6, pp. 311–326, 2013. https://doi.org/10.1016/j.jterra.2013.09.004
W. Hu, B. Tomg & H. Liu, “Dynamics of free straight swimming of angulla angulla including forward, braking and backward locomotion,” J Hydrodyn Ser B, vol. 19, no. 4, pp. 395–402, Aug. 2007. https://doi.org/10.1016/S1001-6058(07)60132-2
Z.-C. Huang, H.-H. Hwung, S.-C. Hsiao & K.-A. Chang, “Laboratory observation of boundary layer flow under spilling breakers in surf zone using particle image velocimetry,” Coast Eng, vol. 57, no. 3, pp. 343–357, Mar. 2010. https://doi.org/10.1016/j.coastaleng.2009.11.004
R. D. Echavez-Díaz & A. Quintero-Orozco, “Estudio experimental del comportamiento dinámico del fluido del aire a través de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209,” Tesis Licenciatura, Ing. Mec., UFPSO, San, CO, 2017. Available: http://repositorio.ufpso.edu.co/xmlui/handle/123456789/2363
Z. Chi, Y. He & G. Naterer, “Convective heat transfer optimization of automotive brake discs,” SAE Int J Passeng Cars - Mech Syst, vol. 2, no. 1, pp. 961–969, Abr. 2009. https://doi.org/10.4271/2009-01-0859
Y.-H. Ho, M. M. Athavale, J. M. Forry, R. C. Hendricks & B. M. Steinetz, “Numerical simulation of secondary flow in gas turbine disc cavities, including conjugate heat transfer,” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1996, Birmingham, UK, Feb. 2015. https://doi.org/10.1115/96-GT-067
R. A. García-León, “Thermal study in three vented brake discs, using the finite element analysis,” DYNA, vol. 84, no. 200, pp. 19–27, 2017. https://doi.org/10.15446/dyna.v84n200.55663
M. N. Dhaubhadel, “Review: CFD Applications in the Automotive Industry,” J Fluids Eng, vol. 118, no. 4, pp. 647–653, 1996. https://doi.org/10.1115/1.2835492
M. N. Dhaubhadel, “CFD applications in the automotive industry (invited keynote presentation),” ASME, FED, vol. 239, pp. 473–480, 1996.
J. Wurm, M. Fitl, M. Gumpesberger, E. Väisänen & C. Hochenauer,, “Novel CFD approach for the thermal analysis of a continuous variable transmission (CVT),” Appl. Therm. Eng, vol. 103, pp. 159–169, Jun. 25, 2016. https://doi.org/10.1016/j.applthermaleng.2016.04.092
M. Pevec, I. Potrc, G. Bombek & D. Vranesevic, “Prediction of the cooling factors of a vehicle brake disc and its influence on the results of a thermal numerical simulation,” Int. J. Automot. Technol, vol. 13, no. 5, pp. 725–733, 2012. https://doi.org/10.1007/s12239-012-0071-y
J. Ruan, P. D. Walker, P. A. Watterson & N. Zhang, “The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle,” Appl. Energy, vol. 183, pp. 1240–1258, Dec. 2016. https://doi.org/10.1016/j.apenergy.2016.09.057
M. Gulec, E. Yolacan & M. Aydin, “Design, analysis and real time dynamic torque control of single-rotor-single-stator axial flux eddy current brake,” IET Electr. Power Appl, vol. 10, no. 9, pp. 869–876, 2016. https://doi.org/10.1049/iet-epa.2016.0022
A. Q. Xu, “Study on the dynamic characteristics of a high frequency brake based on giant magnetostrictive material,” Smart Mater Struct, vol. 25, no. 6, May. 2016. https://doi.org/10.1088/0964-1726/25/6/065001
W. Wei, Y. Hu, Q. Wu, X. Zhao, J. Zhang, & Y. Zhang, “An air brake model for longitudinal train dynamics studies,” Vehicle System Dynamics, vol. 55, no. 4, pp. 517–533, 2016. https://doi.org/10.1080/00423114.2016.1254261
A. Shahril, R. Samin, J. M. Juraidi & J. Daut, “Structural analysis of brake disc using dynamic simulation,” ARPN J Eng Appl Sci, vol. 10, no. 17, pp. 7805–7808, Sep. 2015. Available: http://psasir.upm.edu.my/id/eprint/46400/
U. Andreaus & P. Casini, “Dynamics of friction oscillators excited by a moving base and/or driving force,” J. Sound Vib, vol. 245, no. 4, pp. 685–699, Aug. 2001. https://doi.org/10.1006/jsvi.2000.3555
Y. Cengel , “Tansferencia de calor y masa. Un enfoque práctico,” 3 ed, Mex.: McGraw-Hil, 2007.
D. R. Flores Galindo, “Diseño de perfiles aerodinámicos,” Tesis magistral, Ing Mfg, US, ES, 2006. Available: http://bibing.us.es/proyectos/abreproy/90383/fichero/TFG+Aitor+Robles+Corpa+GIA+Diseño+de+perfiles+aerodinámicos+mediante+metodolog%C3%ADa+inversa+.pdf+
R. García-León, E. Flórez-Solano & Á. Suárez-Quiñones, “Brake Discs: a Technological Review From Its Analysis and Assessment,” Inf. Técnico, vol. 83, no. 2, pp. 217–234, 2019. https://doi.org/10.23850/22565035.1766
A. Sobachkin, G. Dumnov & A. Sobachkin, “Base numérica de CFD integrada en CAD,” SolidWorks, MX, Informe Técnico, 2014. Available: https://www.solidworks.es/sw/docs/Flow_Basis_of_CAD_Embedded_CFD_Whitepaper_ESP.pdf
A. Thuresson, “CFD and Design Analysis of Brake Disc,” Master Thesis, dpto. Appl Mech, Cth Univ Tecn, Got, Swe, 2014. Available: https://publications.lib.chalmers.se/records/fulltext/202010/202010.pdf

Published
How to Cite
Issue
Section
License
Copyright (c) 2020 INGE CUC

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.