Development of a Chemical Equilibrium Gasification Model to Evaluate the Energy Potential of the Palm Kernel Shells from Palm Oil Extraction Industries in Colombia
DOI:
https://doi.org/10.17981/ingecuc.14.2.2018.06Keywords:
Palm kernel shell, fixed bed gasification, aspen plus, chemical equilibrium, |, energy potentialAbstract
Introduction: In palm oil extraction plants, for every 10 tons of fresh fruit bunches (FFB) that are processed, an estimate of 3700 kg of waste are produced. This waste, consisting of empty fruit bunches, fibers, and kernels, mainly, has a lower heating value (LHV) of about 18 MJ/kg. This waste can be considered a by-product as it is possible to be used for steam generation or electricity production to completely or partially cover the energy demand of oil palm processing plants. Among these, kernels are the best option for biomass power generation in fixed-bed gasifiers coupled to motor or generator sets for power below 2 MW
Objective: Evaluate energy potential of oil palm kernel for power generation in typical oil palm extraction plants trough fixed bed gasification coupled to motor/generator sets.
Methodology: A chemical equilibrium model was developed to estimate gas composition and, therefore, energy potential of palm kernel biomass from extractive industries.
Results: This tool enables analyzing process variations caused by changes in the gasifying agent, composition and moisture content of biomass. The model was used to analyze kernel energy potential from a typical plant that processes 10000 ton of fresh fruit bunches per month. Model results were validated using data from literature. The model is used to analyze the energy potential of waste from a typical 10000 ton RFF/month extractor plant.
Conclusions: It is estimated that for every 22 kg/h of oil palm kernel, approximately 70 kg/h of gas are produced with an average composition of 12.5 % H2, 21.8 % CO, 9.5 % CO2, 56 % N2 and traces of CH4, with a low heat value (LHV) close to 4.1 MJ/Nm3. According to the results, the total electricity demand of a typical plant can be supplied using a gasification-based system feed with ~85 % of the kernel from the extraction process.
Downloads
References
[2] M. A. Masmoudi, K. Halouani y M. Sahraoui, “Comprehensive experimental investigation and numerical modeling of the combined partial oxidation-gasification zone in a pilot downdraft air-blown gasifier,” Energy Convers. Manag., vol. 144, pp. 34–52, 2017. https://doi.org/10.1016/j.enconman.2017.04.040
[3] E. E. Silva y E. Yáñez, “Potencial de Cogeneración de Energía Eléctrica,” 2007.
[4] J. A. García, M. M. Cárdenas y E. E. Yáñez, “Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia Power Generation and Use of Biomass at Palm Oil Mills in Colombia,” PALMAS, vol. 31, no. 2, pp. 41–48, 2010.
[5] J. F. Perez, Y. Lenis, S. Rojas y C. Leon, “Decentralized power generation through biomass gasification: a technical - economic analysis and implications by reduction of CO2 emissions,” Rev. la Fac. Ing., pp. 157–169, 2012.
[6] N. A. Samiran, M. N. M. Jaafar, J. H. Ng, S. S. Lam y C. T. Chong, “Progress in biomass gasification technique - With focus on Malaysian palm biomass for syngas production,” Renew. Sustain. Energy Rev., vol. 62, pp. 1047–1062, 2016. https://doi.org/10.1016/j.rser.2016.04.049
[7] A. V. Bridgwater, “The technical and economic feasibility of biomass gasification for power generation,” Fuel, vol. 74, no. 5, pp. 631–653, 1995. https://doi.org/10.1016/0016-2361(95)00001-L
[8] T. Gröbl, H. Walter y M. Haider, “Biomass steam gasification for production of SNG - Process design and sensitivity analysis,” Appl. Energy, vol. 97, pp. 451–461, 2012. https://doi.org/10.1016/j.apenergy.2012.01.038
[9] F. Paviet, F. Chazarenc y M. Tazerout, “Thermo Chemical Equilibrium Modelling of a Biomass Gasifying Process Using ASPEN PLUS,” Int. J. Chem. React. Eng., vol. 7, p. A40, 2009. https://doi.org/10.2202/1542-6580.2089
[10] P. Kuo, W. Wu y W. Chen, “Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis,” Fuel, vol. 117, pp. 1231–1241, 2014. https://doi.org/10.1016/j.fuel.2013.07.125
[11] C. He, X. Feng, K. H. Chu, A. Li y Y. Liu, “Industrialscale fixed-bed coal gasification: Modeling, simulation and thermodynamic analysis,” Chinese J. Chem. Eng., vol. 22, no. 5, pp. 522–530, 2014. https://doi.org/10.1016/S1004-9541(14)60066-5
[12] S. Begum, M. G. Rasul y D. Akbar, “A numerical investigation of municipal solid waste gasification using aspen plus,” Procedia Eng., vol. 90, pp. 710–717, 2014. https://doi.org/10.1016/j.proeng.2014.11.800
[13] A. Gagliano, F. Nocera, M. Bruno y G. Cardillo, “Development of an Equilibrium-based Model of Gasification of Biomass by Aspen Plus,” Energy Procedia, vol. 111, pp. 1010–1019, 2017. https://doi.org/10.1016/j.egypro.2017.03.264
[14] N. Deng et al., “Simulation analysis of municipal solid waste pyrolysis and gasification based on Aspen plus,” Bioresour. Technol., vol. 235, pp. 371–379, 2017.
[15] A. Alembath, “Aspen simulation of oil shale and biomass process in partial fulfillment of the requirements for the degree,” 2016.
[16] T. H. Jayah, L. Aye, R. J. Fuller y D. F. Stewart, “Computer simulation of a downdraft wood gasifier for tea drying,” Biomass and Bioenergy, vol. 25, no. 4, pp. 459–469, 2003. https://doi.org/10.1016/S0961-9534(03)00037-0
[17] S. Jarungthammachote y A. Dutta, “Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier,” Energy, vol. 32, no. 9,pp. 1660–1669, 2007. https://doi.org/10.1016/j.energy. 2007.01.010
[18] C. R. Altafini, P. R. Wander y R. M. Barreto, “Prediction of the working parameters of a wood waste gasifier through an equilibrium model,” Energy Convers. Manag., vol. 44, no. 17, pp. 2763–2777, 2003. https://doi.org/10.1016/S0196-8904(03)00025-6
[19] I. Briceño, J. Valencia y M. Posso, “Potencial de generación de energía de la agroindustria de la palma de aceite en Colombia,” Palmas, vol. 36, pp. 43–53, 2015.
[20] Fedepalma, “Desempeño del sector palmero colombiano,” 2016.
[21] N. Ramzan, A. Ashraf, S. Naveed y A. Malik, “Simulation of hybrid biomass gasification using Aspen plus : A comparative performance analysis for food , municipal solid and poultry waste,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3962–3969, 2011. https://doi.org/10.1016/j.biombioe.2011.06.005
[22] D. Che, S. Li, W. Yang, J. Jia y N. Zheng, “Application of Numerical Simulation on Biomass Gasification,”
Energy Procedia, vol. 17, pp. 49–54, 2012. https://doi.org/10.1016/j.egypro.2012.02.061
[23] R. Nayak y R. K. Mewada, “Simulation of Coal Gasification Process using ASPEN PLUS,” pp. 8–10, 2011.
[24] R. F. E. Machorro, “Estudio de la producción de hidrógeno a partir de los residuos sólidos de la ciudad de México mediante la tecnología de gasificación,” 2016.
[25] M. Fernández-López, J. Pedroche, J. L. Valverde y L. Sánchez-Silva, “Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus,” Energy Convers. Manag., vol. 140, pp. 211–217, 2017. https://doi.org/10.1016/j.enconman.2017.03.008
[26] A. A. P. Susastriawan y H. Saptoadi, “Small-scale downdraft gasi fi ers for biomass gasi fi cation : A review,” vol. 76, no. March, pp. 989–1003, 2017. https://doi.org/10.1016/j.rser.2017.03.112

Downloads
Published
How to Cite
Issue
Section
License
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.