Neurosignal record with a Brain-Computer interface to estimate the level of stress in a student during a class

Authors

DOI:

https://doi.org/10.17981/ingecuc.13.2.2017.10

Keywords:

stress, class, education, emotions, BCI

Abstract

Introduction: This work shows an individual study of the capture, recording, and analysis of the level of stress of a university student during a class that involves an evaluation. The stress information was estimated using a commercial and low-cost computer-brain interface. This allows solving the problem of easily obtaining quantitative and not only qualitative measures.

Objective: The aim of this article is to analyze the behavior of neural signals to estimate the level of stress in a student to some verbal and nonverbal events generated by a teacher.


Methodology: An experimental design of individual character was developed taking as disturbances the level of stress, events such as questions, time limits, and gestures.


Results: Some events that caused stress in students produced by the verbal and non-verbal language of the teacher when teaching the class were evidenced.


Conclusions: Teachers are encouraged to moderate their body language during assessments by avoiding actions that emulate anxieties or pressures in unnecessary times.

Downloads

Download data is not yet available.

Author Biography

Aldo Pardo García, Universidad de Pamplona. Pamplona (Colombia)

Aldo Pardo Garcia received the degree in Electrical Engineer and the Ph.D. degree in Control Drives of Motors from Belarusian State Agrarian Technical University, Belorussia, in 1983 and 1987, respectively. He has a postdoctoral research in Automatic Control at Cinvestav, Mexico and postdoctoral research in Engineering and Computing, Intelligent control at Florida International University, USA. He is currently a full professor in the Department of Mechanical, Mechatronics and Industrial Engineering at the University of Pamplona. He is the head of Automatic and Control research group.

References

G. Halkos y D. Bousinakis, “The effect of stress and dissatisfaction on employees during crisis,” Econ. Anal. Policy, vol. 55, pp. 25–34, 2017. http://dx.doi.org/10.1016/j.eap.2017.04.002

[2] R. Repetti y S. Wang, “Effects of job stress on family relationships,” Curr. Opin. Psychol., vol. 13, pp. 15–18, 20. http://linkinghub.elsevier.com/retrieve/pii/S2352250X16300240

[3] A. Marchand, J. Bilodeau, A. Demers, N. Beauregard, P. Durand y V. Y. Haines, “Gendered depression: Vulnerability or exposure to work and family stressors?,” Soc. Sci. Med., vol. 166, pp. 160–168, 2016. DOI: https://doi.org/10.1016/j.socscimed.2016.08.021

[4] A. S. Masarik y R. D. Conger, “Stress and child development: A review of the Family Stress Model,” Curr. Opin. Psychol., vol. 13, pp. 85–90, 2017. http://dx.doi.org/10.1016/j.copsyc.2016.05.008

[5] A. A. Stone, S. Schneider y J. E. Broderick, “Psychological stress declines rapidly from age 50 in the United States: Yet another well-being paradox,” J. Psychosom. Res., vol. 103, 2017. http://linkinghub.elsevier.com/retrieve/pii/S0022399917309716

[6] C. Salavera, P. Usán, S. Pérez, A. Chato y R. Vera, “Differences in Happiness and Coping with Stress in Secondary Education Students,” Procedia - Soc. Behav. Sci., vol. 237, pp. 1310–1315, 2017. http://linkinghub.elsevier.com/retrieve/pii/S187704281730215X

[7] RAE, “Diccionario de la Real Academia la Lengua Española,” 2017. [En línea]. Disponible en: http://dle.rae.es/?w=estres

[8] Association American Psychological, “Los distintos tipos de Estrés,” 2017. [En línea]. Disponible en: http://www.apa.org/centrodeapoyo/tipos.aspx

[9] C. Fernández Jiménez y M. T. Polo Sánchez, “Afrontamiento, estrés y bienestar psicológico en estudiantes de educación social de nuevo ingreso,” EduPsykhé. Rev. Psicol. y Educ., vol. 10, no. 2, pp. 177–192, 2011. https://dialnet.unirioja.es/servlet/articulo?codigo=3896794

[10] T. Velásquez Pérez, E. E. Espinel Blanco y G. Guerrero Gómez, “Estrategias Pedagógicas en el aula de clase,” Rev. Colomb. Tecnol. Av., vol. 2, no. 28, pp. 124–131, 2016. http://www.unipamplona.edu.co/unipamplona/portalIG/home_40/recursos/revistas/20052017/revista_28.jsp

[11] I. S. Flórez, L. E. Mendoza y V. Pérez Ginna, “Medición automática del nivel de aprendizaje en niños de 4 a 6 años de edad aplicando técnicas de procesamiento de señales,” Rev. Colomb. Tecnol. Av., vol. 2, no. 28, pp. 93–100, 2016. http://www.unipamplona.edu.co/unipamplona/portalIG/home_40/recursos/revistas/20052017/revista_28.jsp

[12] J. Katona, I. Farkas, P. Ujbanyi, A. Dukan y A. Kovari, “Evaluation of the NeuroSky MindFlex EEG headset brain waves data,” in IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 91–94, 2014. http://ieeexplore.ieee.org/document/6822382/

[13] A. Fernández y M. Eid, “Read Go Go!: Towards real-time notification on readers’ state of attention,” in XXIV International Symposium on Information, Communication and Automation Technologies (ICAT), pp. 1–6, 2013. http://ieeexplore.ieee.org/document/6684047/

[14] W. A. Dijk, W. van der Velde, W. J. M. Kolkman, H. J. G. M. Crijns y K. I. Lie, “Integration of the Marquette ECG management system into the Department Information System using the European SCP-ECG Standard,” Computers in Cardiology, 1995. [En línea]. Disponible en: http://ieeexplore.ieee.org/document/482669/

[15] L. Moreno, C. Peña y H. González, “Integración de un sistema de neuroseñales para detectar expresiones en el análisis de material multimedia,” Rev. Fac. Ing., vol. 24, no. 38, pp. 29–40, 2014. http://revistas.uptc.edu.co/index.php/ingenieria/article/view/3156/4343

[16] F. M. Córdova, H. Díaz M., F. Cifuentes L. Cañete y F. Palominos, “Identifying problem solving strategies for learning styles in engineering students subjected to intelligence test and EEG monitoring,” Procedia Comput.Sci., vol. 55, pp. 18–27, ITQM, 2015. Disponible en: https://ac.els-cdn.com/S1877050915014787/1-s2.0-S1877050915014787-main.pdf?_tid=1bd56790-d3b4-11e7-9b67-00000aab0f02&acdnat=1511815797_d51e4bc601e18e4ce25f62ab7eacedb0

[17] J. F. Rubiano, C. A. Peña y E. Martínez, “Avance en el desarrollo de una plataforma de control metal de un robot paralelo tipo Delta,” in VII Congreso Bolivariano de Ingenieria Mecanica, 2012. http://congreso.pucp.edu.pe/vii-cobim/H.1.11.pdf

[18] B. Nakisa, M. N. Rastgoo, D. Tjondronegoro y V. Chandran, “Evolutionary Computation Algorithms for Feature Selection of EEG-based Emotion Recognition using Mobile Sensors,” Expert Syst. Appl., 2017. DOI: http://dx.doi.org/10.1016/j.eswa.2017.09

[19] T. H. E. Science, “Open Your Mind to Next Generation Brainwe EMOTIV Insight Introduction Vid,” 2017. [En línea]. Disponible en: https://www.emotiv.com/insight/HARDWARE

[20] C. Peña, S. Caicedo, L. U. Z. Moreno, M. Maestre y A. Pardo, “Use of a Low Cost Neurosignals Capture System to Show the Importance of Developing Didactic Activities Within a Class to Increase the Level of Student Engagement (Case Study),” WSEAS Trans. Comput., vol. 16, pp. 172–178, 2017. http://www.wseas.org/multimedia/journals/computers/2017/a385905-070.php

[21] C. A. Peña Cortés, O. E. Gualdrón y G. G. Moreno Contreras, “Warning and Rehabilitation System Using Brain Computer Interface (BCI) in Cases of Bruxism,” Ing. y Univ., vol. 18, no. 1, pp. 177–193, 2014. DOI: http://dx.doi.org/10.11144/Javeriana.IYU18-1.sarb

[22] M. Soler, H. Rodríguez y C. Peña, “Desarrollo de un robot explorador operado mediante neuroseñales,” Rev. Politécnica, vol. 10, no. 19, pp. 125–134, 2014. http://revistas.elpoli.edu.co/index.php/pol/article/view/479

Published

2017-07-01

How to Cite

Moreno Cueva, L. A., Peña Cortés, C. A., Maestre Delgado, M., Caicedo Villamizar, S. B., & Pardo García, A. (2017). Neurosignal record with a Brain-Computer interface to estimate the level of stress in a student during a class. INGE CUC, 13(2), 95–101. https://doi.org/10.17981/ingecuc.13.2.2017.10