Algoritmo estocástico para la generación automática de trayectorias de un robot humanoide

Autores/as

DOI:

https://doi.org/10.17981/ingecuc.14.1.2018.03

Palabras clave:

Robots humanoides, planificación de trayectorias, robots autónomos

Resumen

Introducción: La incorporación de sistemas de aprendizaje autónomos en la robótica permitirá la resolución de una gran cantidad de problemas. Uno de ellos es la marcha autónoma para el caso de los robots humanoides debido a la complejidad que tiene por la gran cantidad de variables que influyen en este proceso.

Objetivo: Desarrollar algoritmos que generen marchas autónomas en un robot humanoide con varios grados de libertad.

Metodología: El estudio inicia con el desarrollo de algoritmos estocásticos con pocas dimensiones; luego, se extiende a situaciones n-dimensionales. Posteriormente, se realizan pruebas en simulación, y, por último, las pruebas experimentales. 

Resultados: Se generó un algoritmo basado en el modelo físico del robot para crear las trayectorias de marcha estocásticamente.Se implementó un simulador que contempla las restricciones cinemáticas incluyendo colisiones para verificar los resultados. Adicionalmente, se realizaron cien pruebas experimentales donde se verificó el correcto funcionamiento de las trayectorias.

Conclusiones: Se pudo corroborar que es posible crear un algoritmo estocástico que mezcla reglas determinantes y aleatorias para generar marchas automáticamente en robots humanoides, extendiendo conceptos generados en espacios bidimensionales y tridimensionales a coordenadas articulares n-dimensionales.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Cristian Villate, Universidad de Pamplona. Pamplona (Colombia)

received the Mechatronic engineering degree from the Pamplona University, Pamplona, Colombia, in 2017. He has
been a researcher of the SIARC-A&C (Research Group in Automation and Control) since 2015. http://orcid.org/0000-0002-5427-730X

Cesar Augusto Peña Cortes, Universidad de Pamplona. Pamplona (Colombia)

is currently a full professor in the Department of Mechanical, Mechatronics and Industrial Engineering at the University of Pamplona (since 2004). He is part of the Automation and Control research group. He holds a PhD in
Automation and Robotics from the Universidad Politécnica
de Madrid, Spain (2006). He has a Master’s degree in Electronics and Computer Engineering from the Universidad de los Andes, Colombia (2003) and a professional degree as an Electromechanical Engineer from the Pedagogical and Technological University of Colombia (2001). His research topics revolve around service robots, artificial vision and neurosignals, in which he has several publications in journals and congresses lectures. https://orcid.org/0000-0003-4148-2168

Oscar Eduardo Gualdron Guerrero, Universidad de Pamplona. Pamplona (Colombia)

received his PhD degree in Electronic Engineering from the Rovira I Virgili university, Tarragona, Spain (2006). He is currently the research manager at the University of Pamplona and a full professor in the Department of Electronic Engineering (since 2007). He is part of the Automation and Control research group and the Multisensorial System research group. https://orcid.org/0000-0002-7854-6842

Citas

[1] Z. Mohamed y G. Capi, “Development of a new mobile humanoid robot for assisting elderly people,” Procedia Engineering, vol. 41, no. Iris, pp. 345–351, 2012. DOI: 10.1016/j.proeng.2012.07.183. URL: http://dx.doi.org/10.1016/j.proeng.2012.07.183

[2] G. Wiedebach et al., “Walking on partial footholds including line contacts with the humanoid robot atlas,” in IEEE-RAS International Conference on Humanoid Robots, pp. 1312–1319, 2016. DOI: 10.1109/HUMANOIDS.2016.7803439 URL: https://ieeexplore.ieee.org/document/7803439/

[3] B. Ding, A. Plummer y P. Iravani, “Investigating Balancing Control of a Standing Bipedal Robot With Point Foot Contact,” IFAC-PapersOnLine, vol. 49, no. 21, pp. 403–408, 2016. DOI: http://dx.doi.org/10.1016/j.ifacol.2016.10.587

[4] E. ; Ackerman y E. Guizzo, “Its Wheel-Leg Robot: ‘Best of Both Worlds,’” IEEE Spectrum, 2017. [En línea]. Disponible en: https://spectrum.ieee.org/automaton/robotics/humanoids/boston-dynamics-handle-robot. [Accessed: 20-Jul-2017] URL: https://spectrum.ieee.org/automaton/robotics/humanoids/
boston-dynamics-handle-robot

[5] Y. Hosoda, S. Egawa, J. Tamamoto, K. Yamamoto, R. Nakamura y M. Togami, “Basic design of human-symbiotic robot EMIEW,” in IEEE International Conference on Intelligent Robots and Systems, no. c, pp. 5079–5084, 2006. DOI: 10.1109/IROS.2006.282596. URL: http://ieeexplore.ieee.org/document/4059227/

[6] B. Henze, A. Dietrich y C. Ott, “An Approach to Combine Balancing with Hierarchical Whole-Body Control for Legged Humanoid Robots,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 700–707, 2016. DOI: 10.1109/LRA.2015.2512933. URL: http://ieeexplore.ieee.org/document/7368116/

[7] Y. Liu, P. M. Wensing, J. P. Schmiedeler y D. E. Orin, “Terrain-Blind Humanoid Walking Based on a 3-D Actuated Dual-SLIP Model,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 1073–1080, 2016. DOI: 10.1109/LRA.2016.2530160. URL: http://ieeexplore.ieee.org/document/7407320/
[8] M. W. Clearfield, “Learning to walk changes infants’ social interactions,” Infant Behavior and Development, vol. 34, no. 1, pp. 15–25, 2011. DOI: 10.1016/j.infbeh.2010.04.008. URL: http://dx.doi.org/10.1016/j.infbeh.2010.04.008

[9] E. P. Shaw et al., “Measurement of attentional reserve and mental effort for cognitive workload assessment under various task demands during dual-task walking,” Biological Psychology, vol. 134, no. January, pp. 39–51, 2018. DOI: 10.1016/j.biopsycho.2018.01.009. URL: http://linkinghub.elsevier.com/retrieve/pii/S0301051118300413

[10] K. B. Lee, H. Myung y J. H. Kim, “Online multiobjective evolutionary approach for navigation of humanoid robots,” IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5586–5597, 2015. DOI: 10.1109/TIE.2015.2405901. URL: http://ieeexplore.ieee.org/document/7047860/

[11] D. A. López, J. E. Hernández y C. A. Peña Cortes, “Advances in the control of bipedal platforms using
the system,” Revista Colombiana de Tecnologías de Avanzada, vol. 2, pp. 117–124, 2013. DOI: https://doi.
org/10.24054/16927257.v22.n22.2013.419. URL: http://revistas.unipamplona.edu.co/ojs_viceinves/index.php/RCTA/article/view/419

[12] K. Teachasrisaksakul, Z. Q. Zhang, G. Z. Yang y B. Lo, “Imitation of dynamic walking with bsn for Humanoid robot,” IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 3, pp. 794–802, 2015. DOI: 10.1109/JBHI.2015.2425221. URL: http://ieeexplore.ieee.org/document/7096914/

[13] A. Barrientos, L. Peñin, C. Balager y R. Aracil, Fundamentos de Robótica, 2nd ed. Madrid: McGraw-Hill, 2007.

[14] E. Luhta, “Walk Cycles,” in How to Cheat in Maya 2010, Boston: Focal Press, pp. 177–221, 2010. DOI: 10.1016/B978-0-240-81188-8.50008-4. URL: http://linkinghub.elsevier.com/retrieve/pii/B9780240811888500084

[15] K. H. Koch, K. Mombaur y P. Soueres, “Optimizationbased walking generation for humanoid robot,” in IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 45, no. 22, pp. 498–504, 2012. DOI: 10.3182/20120905-3-HR-2030.00189. URL: http://dx.doi.org/10.3182/20120905-3-HR-2030.00189

[16] J. V. Nunez, A. Briseno, D. A. Rodriguez, J. M. Ibarra y V. M. Rodriguez, “Explicit Analytic Solution for Inverse Kinematics of Bioloid Humanoid Robot,” in 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium, pp. 33–38, 2012. DOI: 10.1109/SBR-LARS.2012.62. URL: http://ieeexplore.ieee.org/document/6363315/

[17] P. Wawrzynski, J. Mozaryn y J. Klimaszewski, “Robust estimation of walking robots velocity and tilt using proprioceptive sensors data fusion,” Robotics and Autonomous Systems, vol. 66, pp. 44–54, 2015. DOI: 10.1016/j.robot.2014.12.012. URL: http://dx.doi.org/10.1016/j.robot.2014.12.012

[18] L. W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Maryland, USA: Wiley, 1999. URL: http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471325937.html

[19] J. Zhao, Z. Feng, F. Chu y N. Ma, “A Brief Introduction to Screw Theory,” in Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms, pp. 29–79, 2014. DOI: 10.1016/B978-0-12-420162-0.00002-3. URL: http://www.sciencedirect.com/science/article/pii/B9780124201620000023

Descargas

Publicado

2018-01-01

Cómo citar

Villate, C., Peña Cortes, C. A., & Gualdron Guerrero, O. E. (2018). Algoritmo estocástico para la generación automática de trayectorias de un robot humanoide. Inge Cuc, 14(1), 30–40. https://doi.org/10.17981/ingecuc.14.1.2018.03

Número

Sección

ARTÍCULOS

Artículos más leídos del mismo autor/a