Equidistant Likert as weighted sum of Response Categories
DOI:
https://doi.org/10.17981/cultedusoc.14.1.2023.04Keywords:
Likert items, Weighted sum, Monotonic, Equidistant, Normal distributionAbstract
Introduction: Addition of scores of Likert items may not be meaningful since equidistant property is not satisfied. This implies computation of mean, standard deviation, correlation, regression and Cronbach alpha using sum of item variances and test variance could be problematic. Objective: Avoiding limitation of summative Likert scores by transforming raw item scores to continuous monotonic scores satisfying equidistant property and evaluate the methods with respect to desired properties and testing normality of transformed test scores. Methodology: The methodological paper gives three methods of transforming discrete, ordinal item scores to continuous scores by weighted sum where weights consider frequencies of different response-categories of different items and generate continuous data satisfying equidistant and monotonic properties. Results and discussions: All the proposed methods avoided major limitations of summative Likert scores, generates continuous data satisfying equidistant and monotonic properties. The method based on frequencies of response-categories for different items (Method 3) passed the normality test unlike the Method 1 and Method 2. Normally distributed transformed scores in Method 3 facilitate undertaking analysis under parametric set up. Conclusions: Proposed methods having high correlations with summative Likert scores, retained similar factor structure and provides reconciliation to the debate on ordinal vs. interval nature of data generated from a Likert questionnaire. Considering the theoretical advantages, the Method 3 is recommended for scoring Likert items primarily due to Normal distribution of individual scores facilitating meaningfulness of operations and to undertake parametric statistical analysis.
Downloads
References
Arvidsson, R. (2019). On the use of ordinal scoring scales in social life cycle assessment. The International Journal of Life Cycle Assessment, 24(3), 604–606. https://doi.org/10.1007/s11367-018-1557-2
Barua, A. (2013). Methods for Decision–making in Survey Questionnaires Based on Likert Scale. Journal of Asian Scientific Research, 3(1), 35–38. https://archive.aessweb.com/index.php/5003/article/view/3446
Bürkner, P.C. & Vuorre, M. (2019). Ordinal Regression Models in Psychology: A Tutorial. Advances in Methods and Practices in Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199
Carifio, J. & Perla, R. (2007). Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. Journal of Social Sciences, 3, 106–116. http://dx.doi.org/10.3844/jssp.2007.106.116
Chakrabartty, S. N. (2021). Optimum number of Response Categories. Current Psychology, 104(1), 1–15. https://doi.org/10.1007/s12144-021-01866-6
Dawes, J. (2007). Do data characteristics change according to the number of scale points used? International Journal of Market Research, 50(1), 61–77. https://doi.org/10.1177/147078530805000106
Flora, D. B. & Curran, P. J. (2004). An Empirical Evaluation of Alternative Methods of Estimation for Confirmatory Factor Analysis with Ordinal Data. Psychological Methods, 9(4), 466–491. https://doi.org/10.1037/1082-989X.9.4.466
Granberg-Rademacker, J. S. (2010). An Algorithm for Converting Ordinal Scale Measurement Data to Interval/Ratio Scale. Educational and Psychological Measurement, 70(1), 74–90. https://doi.org/10.1177/0013164409344532
Harwell, M. R. & Gatti, G. G. (2001). Rescaling ordinal data to interval data in educational research. Review of Educational Research, 71, 105–131. https://doi.org/10.3102/00346543071001105
Hinne, M. (2013). Additive conjoint measurement and the resistance toward falsifiability in psychology. Frontiers in Psychology, 4(1), 1–4. https://doi.org/10.3389/fpsyg.2013.00246
Huiping, W. & Leung, S-O. (2017). Can Likert Scales be Treated as Interval Scales?—A Simulation Study. Journal of Social Service Research, 43(4), 527–532. https://doi.org/10.1080/01488376.2017.1329775
Jamieson, S. (2005, Aug. 11). Likert scale. Encyclopedia Britannica. https://www.britannica.com/topic/Likert-Scale
Kuzon, W. M., Urbanchek, M. G. & McCabe, S. (1996). The seven deadly sins of statistical analysis. Annals of Plastic Surgery, 37, 265–272. https://doi.org/10.1097/00000637-199609000-00006
Lee, J. A. & Soutar, G. N. (2010). Is Schwartz’s value survey an interval scale, and does it really matter? Journal of Cross-Cultural Psychology, 41(1), 76–86. https://doi.Org/10.1177/0022022109348920
Lim, H.-E. (2008). The use of different happiness rating scales: bias and comparison problem? Social Indicators Research, 87, 259–267. https://doi.org/10.1007/s11205-007-9171-x
Marcus-Roberts, H. M. & Roberts, F. S. (1987). Meaningless statistics. Journal of Educational Statistics, 12, 383–394. https://doi.org/10.2307/1165056
Markus, K. A. & Borsboom, D. (2012). The cat came back: evaluating arguments against psychological measurement. Theory & Psychol, 22(4), 452–466. https://doi.org/10.1177/0959354310381155
Michell, J. (1990). An Introduction to the Logic of Psychological Measurement. ErlbaumAssociates.
Munshi, J. (2014). A method for constructing Likert scales. Social Science Research Network. https://doi.org/10.2139/ssrn.2419366
Sheng, Y. & Sheng, Z. (2012). Is coefficient alpha robust to non-normal data? Frontiers in Psychology, 3(34), 1–13. https://doi.org/10.3389/fpstg.2012.00034
Šimkovic, M. & Träuble, B. (2019). Robustness of statistical methods when measure is affected by ceiling and/or floor effect. PloS one, 14(8), 1–47. https://doi.org/10.1371/journal.pone.0220889
Simms, L. J., Zelazny, K., Williams, T. F. & Bernstein, L. (2019). Does the number of response options matter? Psychometric perspectives using personality questionnaire data. Psychological Assessment, 31(4), 557–566. https://doi.org/10.1037/pas0000648
Snell, E. (1964). A Scaling Procedure for Ordered Categorical Data. Biometrics, 20(3), 592–607. https://doi.org/10.2307/2528498
Uyumaz, G. & Sırgancı, G. (2021). Determining the Factors Affecting the Psychological Distance Between Categories in the Rating Scale. International Journal of Contemporary Educational Research, 8(3), 178–190. https://doi.org/10.33200/ijcer.858599
Wu, Ch.-H. (2007). An Empirical Study on the Transformation of Likert scale Data to Numerical Scores. Applied Mathematical Sciences, 1(58), 2851–2862. https://doi.org/10.12988/ams
Yusoff, R. & Janor, R. M. (2014). Generation of an Interval Metric Scale to Measure Attitude. SAGE Open, 4(1), 1–16. https://doi.org/10.1177/2158244013516768
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 CULTURA EDUCACIÓN Y SOCIEDAD

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Creative Commons 2020 CULTURA EDUCACIÓN Y SOCIEDAD
This article is under international license Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
The published articles are the sole responsibility of their authors and do not necessarily reflect the opinions of the editorial committee.
CULTURA EDUCACIÓN Y SOCIEDAD respects the moral rights of its authors, who assign to the editorial committee the patrimonial rights of the published material. In turn, the authors inform that this work is unpublished and has not been previously published.
All articles are under a:
Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.