Likert equidistante como suma ponderada de categorías de respuesta
DOI:
https://doi.org/10.17981/cultedusoc.14.1.2023.04Palabras clave:
Ítems tipo Likert, Suma ponderada, Monotónico, Equidistante, Distribución normalResumen
Introducción: La suma de puntajes de elementos de Likert puede no ser significativa ya que no se cumple la propiedad de equidistancia. Esto implica que el cálculo de la media, la desviación estándar, la correlación, la regresión y el alfa de Cronbach utilizando la suma de las varianzas de los elementos y la varianza de la prueba podría ser problemático. Objetivo: Evitar la limitación de las puntuaciones de Likert sumativas transformando las puntuaciones de los ítems sin procesar en puntuaciones monotónicas continuas que satisfagan la propiedad equidistante y evalúen los métodos con respecto a las propiedades deseadas y prueben la normalidad de las puntuaciones de las pruebas transformadas. Metodología: El documento metodológico proporciona tres métodos para transformar puntajes discretos y ordinales de ítems en puntajes continuos por suma ponderada donde los pesos consideran frecuencias de diferentes categorías de respuesta de diferentes ítems y generan datos continuos que satisfacen propiedades equidistantes y monótonas. Resultados y discusión: Todos los métodos propuestos evitaron las principales limitaciones de las puntuaciones de Likert sumativas, generando datos continuos que satisfacen las propiedades equidistantes y monótonas. El método basado en frecuencias de categorías de respuesta para diferentes ítems (Método 3) pasó la prueba de normalidad a diferencia del Método 1 y el Método 2. Las puntuaciones transformadas normalmente distribuidas en el Método 3 facilitan la realización de análisis bajo una configuración paramétrica. Conclusiones: Los métodos propuestos que tienen altas correlaciones con las puntuaciones de Likert sumativas, conservan una estructura factorial similar y brindan reconciliación al debate sobre la naturaleza ordinal frente a la de intervalo de los datos generados a partir de un cuestionario de Likert. Teniendo en cuenta las ventajas teóricas, se recomienda el Método 3 para puntuar elementos de Likert principalmente debido a la distribución normal de las puntuaciones individuales que facilita la significatividad de las operaciones y para realizar análisis estadísticos paramétricos.
Descargas
Citas
Arvidsson, R. (2019). On the use of ordinal scoring scales in social life cycle assessment. The International Journal of Life Cycle Assessment, 24(3), 604–606. https://doi.org/10.1007/s11367-018-1557-2
Barua, A. (2013). Methods for Decision–making in Survey Questionnaires Based on Likert Scale. Journal of Asian Scientific Research, 3(1), 35–38. https://archive.aessweb.com/index.php/5003/article/view/3446
Bürkner, P.C. & Vuorre, M. (2019). Ordinal Regression Models in Psychology: A Tutorial. Advances in Methods and Practices in Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199
Carifio, J. & Perla, R. (2007). Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. Journal of Social Sciences, 3, 106–116. http://dx.doi.org/10.3844/jssp.2007.106.116
Chakrabartty, S. N. (2021). Optimum number of Response Categories. Current Psychology, 104(1), 1–15. https://doi.org/10.1007/s12144-021-01866-6
Dawes, J. (2007). Do data characteristics change according to the number of scale points used? International Journal of Market Research, 50(1), 61–77. https://doi.org/10.1177/147078530805000106
Flora, D. B. & Curran, P. J. (2004). An Empirical Evaluation of Alternative Methods of Estimation for Confirmatory Factor Analysis with Ordinal Data. Psychological Methods, 9(4), 466–491. https://doi.org/10.1037/1082-989X.9.4.466
Granberg-Rademacker, J. S. (2010). An Algorithm for Converting Ordinal Scale Measurement Data to Interval/Ratio Scale. Educational and Psychological Measurement, 70(1), 74–90. https://doi.org/10.1177/0013164409344532
Harwell, M. R. & Gatti, G. G. (2001). Rescaling ordinal data to interval data in educational research. Review of Educational Research, 71, 105–131. https://doi.org/10.3102/00346543071001105
Hinne, M. (2013). Additive conjoint measurement and the resistance toward falsifiability in psychology. Frontiers in Psychology, 4(1), 1–4. https://doi.org/10.3389/fpsyg.2013.00246
Huiping, W. & Leung, S-O. (2017). Can Likert Scales be Treated as Interval Scales?—A Simulation Study. Journal of Social Service Research, 43(4), 527–532. https://doi.org/10.1080/01488376.2017.1329775
Jamieson, S. (2005, Aug. 11). Likert scale. Encyclopedia Britannica. https://www.britannica.com/topic/Likert-Scale
Kuzon, W. M., Urbanchek, M. G. & McCabe, S. (1996). The seven deadly sins of statistical analysis. Annals of Plastic Surgery, 37, 265–272. https://doi.org/10.1097/00000637-199609000-00006
Lee, J. A. & Soutar, G. N. (2010). Is Schwartz’s value survey an interval scale, and does it really matter? Journal of Cross-Cultural Psychology, 41(1), 76–86. https://doi.Org/10.1177/0022022109348920
Lim, H.-E. (2008). The use of different happiness rating scales: bias and comparison problem? Social Indicators Research, 87, 259–267. https://doi.org/10.1007/s11205-007-9171-x
Marcus-Roberts, H. M. & Roberts, F. S. (1987). Meaningless statistics. Journal of Educational Statistics, 12, 383–394. https://doi.org/10.2307/1165056
Markus, K. A. & Borsboom, D. (2012). The cat came back: evaluating arguments against psychological measurement. Theory & Psychol, 22(4), 452–466. https://doi.org/10.1177/0959354310381155
Michell, J. (1990). An Introduction to the Logic of Psychological Measurement. ErlbaumAssociates.
Munshi, J. (2014). A method for constructing Likert scales. Social Science Research Network. https://doi.org/10.2139/ssrn.2419366
Sheng, Y. & Sheng, Z. (2012). Is coefficient alpha robust to non-normal data? Frontiers in Psychology, 3(34), 1–13. https://doi.org/10.3389/fpstg.2012.00034
Šimkovic, M. & Träuble, B. (2019). Robustness of statistical methods when measure is affected by ceiling and/or floor effect. PloS one, 14(8), 1–47. https://doi.org/10.1371/journal.pone.0220889
Simms, L. J., Zelazny, K., Williams, T. F. & Bernstein, L. (2019). Does the number of response options matter? Psychometric perspectives using personality questionnaire data. Psychological Assessment, 31(4), 557–566. https://doi.org/10.1037/pas0000648
Snell, E. (1964). A Scaling Procedure for Ordered Categorical Data. Biometrics, 20(3), 592–607. https://doi.org/10.2307/2528498
Uyumaz, G. & Sırgancı, G. (2021). Determining the Factors Affecting the Psychological Distance Between Categories in the Rating Scale. International Journal of Contemporary Educational Research, 8(3), 178–190. https://doi.org/10.33200/ijcer.858599
Wu, Ch.-H. (2007). An Empirical Study on the Transformation of Likert scale Data to Numerical Scores. Applied Mathematical Sciences, 1(58), 2851–2862. https://doi.org/10.12988/ams
Yusoff, R. & Janor, R. M. (2014). Generation of an Interval Metric Scale to Measure Attitude. SAGE Open, 4(1), 1–16. https://doi.org/10.1177/2158244013516768
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 CULTURA EDUCACIÓN Y SOCIEDAD

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Creative Commons 2020 CULTURA EDUCACIÓN Y SOCIEDAD
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Los artículos publicados son de exclusiva responsabilidad de sus autores y no reflejan necesariamente las opiniones del comité editorial.
La Revista CULTURA EDUCACIÓN Y SOCIEDAD respeta los derechos morales de sus autores, los cuales ceden al comité editorial los derechos patrimoniales del material publicado. A su vez, los autores informan que el presente trabajo es inédito y no ha sido publicado anteriormente.
Todos los artículos están bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.