Relationship between the automated environment of a flight deck, cognitive flexibility and focused attention in a sample of Colombian pilots
Keywords:
Focused Attention, Cognitive Flexibility, Automation, PilotsAbstract
The objective was to analyze the relationship between total, automated and manual flight hours, cognitive flexibility and focused attention in a sample of Colombian pilots. The method used was the analytical empirical, non-experimental, correlational-predictive and cross-sectional design. 100 civilian pilots participated, assuming a confidence level of 95%. The results show low negative correlations between the Stroop Interference variables and the total number of hours studied, as well as between Stroop conflict and manual flight hours. Additionally, a low positive correlation was found between Wisconsin categories and manual flight hours. The regression showed predictive models for focused attention, but not for cognitive flexibility. It is concluded that there are relationships and predictions between total flight hours and focused attention.
Downloads
References
Abbott, K.; Slotte, S. & Stimson, D. (1996). Report on the interfaces between flightcrews and modern flight deck systems [Report]. Federal Aviation Administration.
https://rosap.ntl.bts.gov/view/dot/8719
Archer, J. (2012). Effects of Automation in the Aircraft Cockpit Environment: Skill Degradation, Situation Awareness, Workload. Purdue University.
Bainbridge, S. M. (2002). Mandatory Disclosure: A Behavioral Analysis. SSRN Electronic Journal, 68(4).
https://doi.org/10.2139/ssrn.329880
Billings, C. E. (1991). Human-centered aircraft automation: A concept and guidelines. National Aeronautics and Space Administration. [Technical Memorandum 19910022821] NASA.
https://ntrs.nasa.gov/citations/19910022821
Boeing Commercial Airplanes. (2013). Statistical summary of commercial airplane accidents: Worldwide operations 1959 – 2012. Boeing.
https://skybrary.aero/articles/boeing-annual-summary-commercial-jet-airplane-accidents
Bowers, C.; Deaton, J.; Oser, R.; Prince, C. & Kolb, M. (1995). Impact of automation on aircrew communication and decision-making performance. The Inter–national journal of aviation psychology, 5(2), 145–167.
https://doi.org/10.1207/s15327108ijap0502_2
Casner, S. M.; Geven, R. W.; Recker, M. P. & Schooler, J. W. (2014). The retention of manual flying skills in the automated cockpit. Human factors, 56(8), 1506–1516.
https://doi.org/10.1177/0018720814535628
Causse, M.; Dehais, F.; Arexis, M. & Pastor, J. (2011). Cognitive aging and flight performances in general aviation pilots. Aging, Neuropsychology, and Cognition, 18(5), 544–561.
https://doi.org/10.1080/13825585.2011.586018
Chao, G. (2009, 08-10 March). Human-computer interaction: process and principles of human-computer interface design [Conference]. International Conference on Computer and Automation Engineering, Bangkok, Thailand.
https://doi.org/10.1109/ICCAE.2009.23
Chávez, E.; Fernández, A.; Rodrígues, Á. F.; Gómez, M. G. y Sánchez, B. (2017). Intervención desde la actividad física en mujeres hipertensas de la tercera edad. Revista Cubana de Investigaciones Biomédicas, 36(1), 1–10.
https://revibiomedica.sld.cu/index.php/ibi/article/view/38
Chua, Z. & Causse, M. (2016, July 27-31). Aging Effects on Brain Efficiency in General Aviation Pilots [Conference]. International Conference on Neuroergonomics and Cognitive Engineering, AHFE, Walt Disney World, Florida, USA.
https://doi.org/10.1007/978-3-319-41691-5
Dorneich, M. C.; McGrath, K. A.; Dudley, R. F. & Morris, M. D. (2013, 13-16 October). Analysis of the Characteristics of Adaptive Systems [Conference]. International Conference on Systems, Man, and Cybernetics, Manchester, UK.
https://doi.org/10.1109/smc.2013.156
Edwards, K. (1990). The interplay of affect and cognition in attitude formation and change. Journal of Personality and Social Psychology, 59(2), 202–216.
https://doi.org/10.1037/0022-3514.59.2.202
Endsley, M. R. & Kiris, E. O. (1995). The out-of-the-loop performance problem and level of control in automation. Human Factors, 37(2), 381–394.
https://doi.org/10.1518/001872095779064555
Fagerland, M. & Hosmer, D. (2012). A generalized Hosmer–Lemeshow goodness-of-fit test for multinomial logistic regression models. The Stata Journal, 12(3), 447–453.
https://doi.org/10.1177/1536867X1201200307
Ferris, T.; Sarter, N. & Wickens, C. (2010). Cockpit Automation. Still Struggling to Catch Up. In E. Salas & D. Maurino (Eds.), Human Factors in Aviation (2 ed., pp. 479–503). Academic Press Publications.
https://doi.org/10.1016/B978-0-12-374518-7.00015-8
Gil, G.-H.; Kaber, D; Kaufmann, K. & Kim, S.-H. (2012). Effects of modes of cockpit automation on pilot performance and workload in a next generation flight concept of operation. Human Factors and Ergonomics in Manufacturing & Service Industries, 22(5), 395–406.
Golden, Z. L. & Golden, C. J. (2002). Patterns of performance on the Stroop Color and Word Test in children with learning, attentional, and psychiatric disabilities. Psychology in the Schools, 39(5), 489–495.
https://doi.org/10.1002/pits.10047
Hardy, D. J.; Satz, P.; D’Elia, L. F. & Uchiyama, C. L. (2007). Age-Related Group and Individual Differences in Aircraft Pilot Cognition. The International Journal of Aviation Psychology, 17(1), 77–90.
https://doi.org/10.1080/10508410709336938
Heaton, R. (1981). A manual for the Wisconsin Card Sorting Test. Psychological Assessment Resources.
Jamovi Stats Open Now. (2021). Jamovi (Versión 2.2.5) [Software].
Kantowitz, B. y Campbell, J. (1996). Pilot workload and flightdeck automation en R. CRC Press.
Koeppen, N. A. (2012). The influence of automation on aviation accident and fatality rates: 2000-2010. Embry-Riddle Aeronautical University.
https://commons.erau.edu/publication/95
Lewandowsky, S.; Mundy, M. & Tan, G. (2000). The dynamics of trust: Comparing humans to automation. Journal of Experimental Psychology: Applied, 6(2), 104–123.
https://doi.org/10.1037/1076-898X.6.2.104
Li, Y. (2020). The impact of aviation accidents on aircraft manufacturers [Thesis Dissertations, Universidad Tufts]. Base de datos ProQuest.
Liu, Q.; Wang, Y.; Pang, J.; Xiong, D.; Deng, X.; Bai, Y. & Guo, X. (2017, 21-23 October). Study on mental attributes of aged test pilots [Conference]. International Conference on Man-Machine Environment System Engineering, Jinggangshan, China.
https://doi.org/10.1007/978-981-10-6232-2_10
Martínez-Loredo, V.; Fernández-Hermida, J.; Carballo, J. & Fernández-Artamendi, S. (2017). Long-term reliability and stability of behavioral measures among adolescents: The Delay Discounting and Stroop tasks. Journal of Adolescence, 58, 33–39.
https://doi.org/10.1016/j.adolescence.2017.05.003
Morrow, D. G.; Menard, W. E.; Stine-Morrow, E. A. L.; Teller, T. & Bryant, D. (2001). The influence of expertise and task factors on age differences in pilot communication. Psychology and Aging, 16(1), 31–46.
https://doi.org/10.1037/0882-7974.16.1.31
Norman, D. A. (1990). The “Problem” with Automation: Inappropriate Feedback and Interaction, not “Over-Automation.” Philosophical Transactions of the Royal Society of London, 327(1241), 585–593.
http://www.jstor.org/stable/55330
Parasuraman, R. & Manzey, D. H. (2010). Complacency and bias in human use of automation: an attentional integration. Human factors, 52(3), 381–410.
https://doi.org/10.1177/0018720810376055
Parasuraman, R.; Sheridan, T. B. & Wickens, C.D. (2000). A Model for Types and Levels of Human Interaction with Automation. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 30(1), 286–297.
https://doi.org/10.1109/3468.844354
Parzen, E.; Tanabe, K. & Kitagawa, G. (Eds.). (2012). Selected Papers of Hirotugu Akaike. Springer Science & Business Media.
https://doi.org/10.1007/978-1-4612-1694-0
Reason, J. T. (1990). Human error. Cambridge University Press.
Riley, F. J. (1996). Assembly automation: a management handbook. Industrial Press Inc.
Salas, E.; Rosen, M. A.; Burke, C. S.; Goodwin, G. F. & Fiore, S. M. (2006). The Making of a Dream Team: When Expert Teams Do Best. In K. A. Ericsson, N. Charness, P. J. Feltovich & R. R. Hoffman (Eds.), The Cambridge handbook of expertise and expert performance (pp. 439–453). Cambridge University Press.
https://doi.org/10.1017/CBO9780511816796.025
Sternberg, R. (2015). Cognitive Psychology [6 ed.]. Cengage Learning.
Strauch B. (2017a). The Automation-by-Expertise-by-Training Interaction. Human factors, 59(2), 204–228.
https://doi.org/10.1177/0018720816665459
Strauch, B. (2017b). Investigating Human Error: Incidents, Accidents, and Complex Systems [2 ed.]. CRC Press.
https://doi.org/https://doi.org/10.1201/9781315589749
Szretter, M. E. (2013). Apunte de Regresión Lineal. Universidad de Buenos Aires.
Volz, K. M. (2018). Cognitive skill degradation: Analysis and evaluation in flight planning [Doctoral dissertation, Iowa State University]. DRLIB.
https://dr.lib.iastate.edu/handle/20.500.12876/30870
Wickens, C. D.; Clegg, B. A.; Vieane, A. Z. & Sebok, A. L. (2015). Complacency and Automation Bias in the Use of Imperfect Automation. Human factors, 57(5), 728–739.
https://doi.org/10.1177/0018720815581940
Wiener, N. (1964). God and Golem, Inc: A Comment on Certain Points where Cybernetics Impinges on Religion. MIT Press.
Wiener, E. & Curry, R. (1980). Flight-deck automation: Promises and problems. Ergonomics, 23(10), 995–1011.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Applied Cognitive Neuroscience

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.