Aproveitamento da água condensada dos equipamentos de ar condicionado como estratégia para enfrentar a escassez mundial de água doce: uma revisão

Autores

  • Adilson Celimar Dalmora Universidade Federal do Rio Grande do Sul (UFRGS)
  • Matheus da Silva Civeira Universidade Federal do Rio Grande do Sul (UFRGS)
  • Samuel do Nascimento de Campos Pontifícia Universidade Católica do Rio Grande do Sul
  • Hugo Gaspar Hernández Palma Corporación Unificada Nacional de Educación Superior (CUN)

DOI:

https://doi.org/10.17981/ladee.03.02.2022.4

Palavras-chave:

Recuperação de água condensada, reúso de água, uso sustentável da água, desenvolvimento sustentável

Resumo

Introdução: O aumento da demanda mundial por água tornou-se um dos temas mais relevantes sobre sustentabilidade ambiental e conservação dos recursos hídricos. Em decorrência da escassez de água potável, processos como o aproveitamento da água por meio de práticas, técnicas e tecnologias para seu uso eficiente tornaram-se essenciais para as gerações futuras. Dentre as possibilidades de aproveitamento da água, destacam-se os sistemas de ar condicionado, devido à formação de água condensada durante o funcionamento. A população mundial está cada vez mais preocupada com as questões ambientais, mostrando que é preciso buscar alternativas para reaproveitar a água, seja para uso em jardinagem, esgoto, lavagem de calçadas, carros, entre outros. O presente estudo realizou uma revisão de artigos primários publicados nas bases de dados Scopus e Web of Science entre os anos de 2013 a 2022. Os termos utilizados para a busca foram reúso de água, água condensada e ar condicionado. Objeto: O objetivo desta revisão de literatura foi refletir sobre o tema reaproveitamento da água de condensação dos aparelhos de ar condicionado, conscientizar e preservar, apontando para o desperdício de água dos aparelhos de ar condicionado. É importante ressaltar que os parâmetros de potabilidade para o reúso dessa água devem ser determinados, visando uma proposta de seu uso. Além disso, análises físico-químicas e bacteriológicas são essenciais para definir a classificação de uso da água de condensação. Essa estratégia de uso sustentável dos recursos hídricos pode gerar economia de até 100% no consumo de água em empreendimentos de médio e grande porte, como shoppings e indústrias, e potencializar o futuro do planeta Terra.

Downloads

Não há dados estatísticos.

Referências

Abdullah, M. A. & Mursalin, R. (2021). Condensed water recycling in an air conditioning unit. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 18(3), 13–19. https://www.iosrjournals.org/iosr-jmce/papers/vol18-issue3/Series-2/B1803021319.pdf

Al-Farayedhi, A. A., Ibrahim, N. I. & Gandhidasan, P. (2014). Condensate as a water source from vapor compression systems in hot and humid regions. Desalination, 349, 60–67. https://doi.org/10.1016/j.desal.2014.05.002

Algarni, S., Saleel, C. & Mujeebu, M. A. (2018). Air-conditioning condensate recovery and applications—Current developments and challenges ahead. Sustainable Cities and Society, 37, 263–274. https://doi.org/10.1016/j.scs.2017.11.032

Arden, S., Morelli, B., Cashman, S., Ma, X., Jahne, M. & Garland, J. (2020). Onsite Non-potable Reuse for Large Buildings: Environmental and Economic Suitability as a Function of Building Characteristics and Location. Water Research, 191, 1–10. https://doi.org/10.1016/j.watres.2020.116635

Barbosa, T. & Coelho, L. (2016). Sustentabilidade por meio do reúso da água dos aparelhos de arcondicionado da Faculdade de Tecnologia Deputado Waldyr Alceu Trigo – FATEC Sertãozinho. Revista Academus, São Paulo, 4(1), 1–10.

Bastos, C. & Calmon, J. (2011). Uso de água residual do ar condicionado e de agua pluvial como gestão da oferta em uma edificação comercial: estudo de caso. Habitat Sustentable, 3(2), 66–74. https://revistas.ubiobio.cl/index.php/RHS/article/view/436

Bergmair, D. (2015). Design of a system for humidity harvesting using water vapor selective membranes [Phd Thesis, Technische Universiteit Eindhoven]. TU/e. https://pure.tue.nl/ws/portalfiles/portal/3860479/789938.pdf

Bergmair, D., Metz, S. J., De Lange, H. C. & Van Steenhoven, A. A. (2014). System analysis of membrane facilitated water generation from air humidity. Desalination, 339, 26–33. https://doi.org/10.1016/j.desal.2014.02.007

Beysens, D., Clus, O., Mileta, M., Milimouk, I., Muselli, M. & Nikolayev, V. S. (2007). Collecting dew as a water source on small islands: the dew equipment for water project in Bis˘ evo (Croatia). Energy, 32(6), 1032–1037. https://doi.org/10.1016/j.energy.2006.09.021

Bui, D. T., Nida, A., Ng, K. C. & Chua, K. J. (2016). Water vapor permeation and dehumidification performance of poly (vinyl alcohol)/lithium chloride composite membranes. Journal of Membrane Science, 498, 254–262. https://doi.org/10.1016/j.memsci.2015.10.021

Bui, T. D., Wong, Y., Thu, K., Oh, S. J., Kum Ja, M., Ng, K. C., Raisul, I. & Chua, K. J. (2017). Effect of hygroscopic materials on water vapor permeation and dehumidification performance of poly (vinyl alcohol) membranes. Journal of Applied Polymer Science, 134(17), 1–9. https://doi.org/10.1002/app.44765

Cattani, L., Magrini, A. & Cattani, P. (2018). Water Extraction from Air by Refrigeration—Experimental Results from an Integrated System Application. Applied Sciences, 8, 1–21. https://doi.org/10.3390/app8112262

Cuviella-Suárez, C., Colmenar-Santos, A., Borge-Diez, D. & López-Rey, Á. (2021). Reduction of water and energy consumption in the sanitary ware industry by an absorption machine operated with recovered heat. Journal of Cleaner Production, 292, 126049. https://doi.org/10.1016/j.jclepro.2021.126049

Dalai, P., Nanda, P., Mund, C., Mishra, D. & Gupta, A. (2017). An experimental study on water harvesting from a modified window air-conditioner. Energy Procedia, 109, 253–260. https://doi.org/10.1016/j.egypro.2017.03.058

De Souza, N. L. & Cordeiro, L. F. (2022). Use of Water from Air Conditioning Equipment for Non-Drinking Purposes: A Case Study at the Federal Institute of Pernambuco-Campus Afogados da Ingazeira. International Journal of Advanced Engineering Research and Science, 9(11), 472– 482. https://dx.doi.org/10.22161/ijaers.911.56

Eades, W. G. (2018). Energy and water recovery using air-handling unit condensate from laboratory HVAC systems. Sustainable Cities and Society, 42, 162–175. https://doi.org/10.1016/j.scs.2018.07.006

Ghimire, S. R., Johnston, J. M., Garland, J., Edelen, A., Ma, X. C. & Jahne, M. (2019). Life cycle assessment of a rainwater harvesting system compared with an AC condensate harvesting system. Resources, Conservation and Recycling, 146, 536–548. https://doi.org/10.1016/j.resconrec.2019.01.043

Gido, B., Friedler, E. & Broday, D. M. (2016). Liquid-desiccant vapor separation reduces the energy requirements of atmospheric moisture harvesting. Environmental Science & Technology, 50(15), 8362–8367. https://doi.org/10.1021/acs.est.6b01280

Gürsoy, M., Harris, M. T., Carletto, A., Yaprak, A. E., Karaman, M. & Badyal, J. P. S. (2017). Bioinspired asymmetric-anisotropic (directional) fog harvesting based on the arid climate plant Eremopyrum orientale. Colloids and surfaces a: physicochemical and engineering aspects, 529, 959–965. https://doi.org/10.1016/j.colsurfa.2017.06.065

Gürsoy, M., Harris, M. T., Downing, J. O., Barrientos-Palomo, S. N., Carletto, A., Yaprak, A. E., Karaman, M. & Badyal, J. P. S. (2017). Bioinspired fog capture and channel mechanism based on the arid climate plant Salsola crassa. Colloids and surfaces a: physicochemical and engineering aspects, 529, 195–202. https://doi.org/10.1016/j.colsurfa.2017.05.071

Hermes, J. (2013, January 15). Air Conditioning Condensate Recovery. Environment + Energy LEADER. https://www.environmentalleader.com/2013/01/air-conditioning-condensate-recovery

Joshi, V. P., Joshi, V. S., Kothari, H. A., Mahajan, M. D., Chaudhari, M. B. & Sant, K. D. (2017). Experimental investigations on a portable fresh water generator using a thermoelectric cooler. Energy Procedia, 109, 161–166. https://doi.org/10.1016/j.egypro.2017.03.085

Kim, H., Yang, S., Rao, S. R., Narayanan, S., Kapustin, E. A., Furukawa, H., Umans, A. S., Yaghi, O. M. & Wang, E. N. (2017). Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356(6336), 430–434. https://doi.org/10.1126/science.aam8743

Kumar, M. & Yadav, A. (2015). Experimental investigation of solar powered water production from atmospheric air by using composite desiccant material “CaCl2/saw wood”. Desalination, 367, 216–222. https://doi.org/10.1016/j.desal.2015.04.009

Lawrence, T., Perry, J. & Dempsey, P. (2010). Capturing condensate by retrofitting AHUs. ASHRAE Journal, 52(1), 48–54. https://technologyportal.ashrae.org/Journal/ArticleDetail/957

Liu, S., He, W., Hu, D., Lv, S., Chen, D., Wu, X., Xu, F. & Li, S. (2017). Experimental analysis of a portable atmospheric water generator by thermoelectric cooling method. Energy Procedia, 142, 1609–1614. https://doi.org/10.1016/j.egypro.2017.12.538

Loveless, K.J., Farooq, A. & Ghaffour, N. (2013). Collection of condensate water: Global potential and water quality impacts. Water Resources Management, 27(5), 1351–1361. https://doi.org/10.1007/s11269-012-0241-8

Magrini, A., Cattani, L., Cartesegna, M. & Magnani, L. (2015a). Production of water from the air: The environmental sustainability of air-conditioning systems through a more intelligent use of resources. The advantages of an integrated system. Energy Procedia, 78, 1153–1158. https://doi.org/10.1016/j.egypro.2015.11.081

Magrini, A., Cattani, L., Cartesegna, M. & Magnani, L. (2015b). Integrated Systems for Air Conditioning and Production of Drinking Water – Preliminary Considerations. Energy Procedia, 75, 1659–1665. https://doi.org/10.1016/j.egypro.2015.07.406

Magrini, A., Cattani, L., Cartesegna, M. & Magnani, L. (2017). Water Production from Air Conditioning Systems: Some Evaluations about a Sustainable use of Resources. Sustainability, 9, 1–17. https://doi.org/10.3390/su9081309

Mahvi, A. H., Alipour, V. & Rezaei, L. (2013). Atmospheric moisture condensation to water recovery by home air conditioners. American Journal of Applied Sciences, 10(8), 917–923. https://doi.org/10.3844/ajassp.2013.917.923

Milani, D., Qadir, A., Vassallo, A., Chiesa, M. & Abbas, A. (2014). Experimentally validated model for atmospheric water generation using a solar assisted desiccant dehumidification system. Energy Building, 77, 236–246. https://doi.org/10.1016/j.enbuild.2014.03.041

Park, K.-C., Kim, P., Grinthal, A., He, N., Fox, D., Weaver, J. C. & Aizenberg, J. (2016). Condensation on slippery asymmetric bumps. Nature, 531(7592), 78–82. https://doi.org/10.1038/nature16956

Raveesh, G., Goyal, R., & Tyagi, S. K. (2023). Parametric analysis of atmospheric water generation system and its viability in Indian cities. Thermal Science and Engineering Progress, 39, 101682. https://doi.org/10.1016/j.tsep.2023.101682

Scalize, P. S., Soares, S., Alves, A. C., Marques, T., Mesquita, G. G., Ballaminut, N. & Albuquerque, A. C. (2018) Use of condensed water from air conditioning systems. Open Engineering, 8(1), 284–292. https://doi.org/10.1515/eng-2018-0031

Shang, L., Fu, F., Cheng, Y., Yu, Y., Wang, J., Gu, Z. & Zhao, Y. (2017). Bioinspired multifunctional spindle-knotted microfibers from microfluidics. Small, 13(4), 1600286. https://doi.org/10.1002/smll.201600286

Siam, L., Al-Khatib, I. A., Anayah, F., Jodeh, S., Hanbali, G., Khalaf, B. & Deghles, A. (2019). Developing a strategy to recover condensate water from air conditioners in Palestine. Water, 11(8), 1–17. https://doi.org/10.3390/w11081696

Tan, Y. Z., Han, L., Chew, N.G.P., Chow, W.H., Wang, R. & Chew, J. W. (2018). Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling. Applied Energy, 231, 1079–1088. https://doi.org/10.1016/j.apenergy.2018.09.196

Tu, R. & Hwang, Y. (2019). Performance analyses of a new system for water harvesting from moist air that combines multi-stage desiccant wheels and vapor compression cycles. Energy Conversion and Management, 198, 111811. https://doi.org/10.1016/j.enconman.2019.111811

William, G. E., Mohamed, M. H. & Fatouh, M. (2015). Desiccant system for water production from humid air using solar energy. Energy, 90, 1707–1720. https://doi.org/10.1016/j.energy.2015.06.125

Woods, J. (2014). Membrane processes for heating, ventilation, and air conditioning. Renewable and Sustainable Energy Reviews, 33, 290–304. https://doi.org/10.1016/j.rser.2014.01.092

Yin, Y., Qian, J. & Zhang, X. (2014). Recent advancements in liquid desiccant dehumidification technology. Renewable and Sustainable Energy Reviews, 31, 38–52. https://doi.org/10.1016/j.rser.2013.11.021

Zhang, S., Huang, J., Chen, Z. & Lai, Y. (2017). Bioinspired special wettability surfaces: from fundamental research to water harvesting applications. Small, 13(3), 1–28. https://doi.org/10.1002/smll.201602992

Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F. Q., Zhao, Y., Zhai, J. & Jiang, L. (2010). Directional water collection on wetted spider silk. Nature, 463(7281), 640–643. https://doi.org/10.1038/nature08729

Publicado

2022-12-28

Como Citar

Dalmora, A. C. ., da Silva Civeira, M. ., do Nascimento de Campos, S. ., & Hernández Palma, H. G. . (2022). Aproveitamento da água condensada dos equipamentos de ar condicionado como estratégia para enfrentar a escassez mundial de água doce: uma revisão. LADEe Latin American Developments in Energy Engineering, 3(2), 35–46. https://doi.org/10.17981/ladee.03.02.2022.4

Edição

Secção

Artículos