An overview of urban environmental pollution in external and internal environments by PM2.5 particulate matter and the sick building syndrome

Authors

  • Matheus da Silva Civeira Universidade Federal do Rio Grande do Sul (UFRGS)
  • Adilson Celimar Dalmora Universidade Federal do Rio Grande do Sul (UFRGS)
  • Samuel do Nascimento de Campos Pontifícia Universidade Católica do Rio Grande do Sul
  • Hugo Gaspar Hernández Palma Corporación Unificada Nacional de Educación Superior (CUN)

DOI:

https://doi.org/10.17981/ladee.03.02.2022.3

Keywords:

Air contamination, sick building syndrome, respiratory diseases, public health

Abstract

Introduction: A healthy environment must have air free of pollution, but this issue has always existed and now affects the entire population. The PM2.5, which primarily originates from the car fleet, is one of the pollutants that has the biggest impact. With the energy crisis in the 1970s and the ensuing construction of closed buildings, primarily in developed countries, indoor air quality emerged as a science. It then gained importance when it was found that the declining ventilation levels in those nations were largely to blame for the rising concentrations of pollutants in indoor air. Sick Building Syndrome (SBS) and poor indoor air quality are both connected to ailments like colds, allergies, and coughing. The application of special legislation must be integrated with research and education of building occupants to effectively provide a healthy environment. Objetive: The aim of this review is to analyze various findings from investigations on the effects of PM2.5 pollution on the internal and exterior urban environment, as well as the effects of these concentrations on human health. Results: By comparing the findings with other studies, it is possible identify some common behaviors of fine particles, determining the concentration differences in the environments and showing how different sources and conditions can produce different variations in concentrations. Conclusions: This study draws attention to the prevention of SBS. This can be minimized during the planning and execution phases of new construction or restoration projects. Thus, contributing to the health of people who live or work indoors.

Downloads

Download data is not yet available.

References

American Lung Association. (2001). Urban air pollution and health inequities: a workshop report. Environmental Health Perspectives, 109(suppl 3), 357-374. https://doi.org/10.1289/ehp.109-1240553

Arciniégas, C. (2012). Diagnóstico y control de material particulado: partículas suspendidas totales y fracción respirable pm10. Luna Azul, 34, 195–213. https://revistasojs.ucaldas.edu.co/index.php/lunazul/issue/view/84

Akyol, S., Erdogan, S., Idiz, N., Celik, S., Kaya, M., Ucar, F. & Akyol, O. (2014). The role of reactive oxygen species and oxidative stress in carbon monoxide toxicity: an in-depth analysis. Redox Report, 19(5), 180–189. https://doi.org/10.1179/1351000214Y.0000000094

Baccarelli, A., Barretta, F., Dou, C., Zhang, X., McCracken, J. P., Díaz, A., Bertazzi, P. A., Schwartz, J., Wang, S. & Hou, L. (2011). Effects of particulate air pollution on blood pressure in a highly exposed population in Beijing, China: a repeated-measure study. Environmental health, 10(1), 1–10. https://doi.org/10.1186/1476-069x-10-108

Baklanov, A., Molina, L. T. & Gauss, M. (2016). Megacities, air quality and climate. Atmospheric Environment, 126, 235–249. https://doi.org/10.1016/j.atmosenv.2015.11.059

Barranquilla Verde. (2018). Informe anual de calidad de aire de barranquilla. Alcaldía de Barranquilla. http://barranquillaverde.gov.co/calidad-del-aire

Barría, R. M., Calvo, M., & Pino, P. (2016). Indoor air pollution by fine particulate matter in the homes of newborns. Revista Chilena de Pediatría, 87(5), 343–350. https://doi.org/10.1016/J.RCHIPE.2016.04.007

Binnie, P. W. (2021). Biological pollutants in the indoor environment. In P. W. Binnie, Indoor Air Pollution (pp. 13–24). CRC Press.

Brickus, L. S. & De Aquino, F. R. (1999). A qualidade do ar de interiores e a química. Química nova, 22(1), 65–74. https://quimicanova.sbq.org.br/detalhe_artigo.asp?id=2044

Cao, J. J., Lee, S. C., Chow, J. C., Cheng, Y., Ho, K. F., Fung, K., Liu, S. X. & Watson, J. G. (2005). Indoor/outdoor relationships for PM2.5 and associated carbonaceous pollutants at residential homes in Hong Kong - Case study. Indoor Air, 15(3), 197–204. https://doi.org/10.1111/j.1600-0668.2005.00336.x

Carrion-Matta, A., Kang, C. M., Gaffin, J. M., Hauptman, M., Phipatanakul, W., Koutrakis, P. & Gold, D. R. (2019a). Classroom indoor PM2.5 sources and exposures in inner-city schools. Environment International, 131, 1–15. https://doi.org/10.1016/j.envint.2019.104968

Carrion-Matta, A., Kang, C. M., Gaffin, J. M., Hauptman, M., Phipatanakul, W., Koutrakis, P. & Gold, D. R. (2019b). Classroom indoor PM2.5 sources and exposures in inner-city schools. Environment International, 131, 1–15. https://doi.org/10.1016/j.envint.2019.104968

Cheung, H. C., Morawska, L. & Ristovski, Z. D. (2011). Observation of new particle formation in subtropical urban environment. Atmospheric Chemistry and Physics, 11(8), 3823–3833. https://doi.org/10.5194/acp-11-3823-2011

Echeverri, C. A. & Maya, G. J. (2008). Relación entre las partículas finas PM2.5 y respirables (PM10) en la ciudad de medellín. Revista Ingenierías Universidad de Medellín, 7(12), 23–42. https://revistas.udem.edu.co/index.php/ingenierias/article/view/198

Elbayoumi, M., Ramli, N. A., Yusof, N. & Al Madhoun, W. (2013). Spatial and seasonal variation of particulate matter (PM10 and PM2.5) in Middle Eastern classrooms. Atmospheric Environment, 80, 389–397. https://doi.org/10.1016/j.atmosenv.2013.07.067

Glencross, D. A., Ho, T.-R., Camina, N., Hawrylowicz, C. M. & Pfeffer, P. E. (2020). Air pollution and its effects on the immune system. Free Radical Biology and Medicine, 151, 56–68. https://doi.org/10.1016/j.freeradbiomed.2020.01.179

Halek, F., Kianpour-Rad, M. & Kavousirahim, A. (2013). Parametric evaluation of indoor particulate matters in elementary schools in the central parts of Tehran. Indoor and Built Environment, 22(3), 580–585. https://doi.org/10.1177/1420326X11433224

Han, Y., Li, X., Zhu, T., Lv, D., Chen, Y., Hou, Li’an, Zhang, Y. & Ren, M. (2016). Characteristics and Relationships between Indoor and Outdoor PM 2.5 in Beijing: A Residential Apartment Case Study. Aerosol and Air Quality Research, 16, 2386–2395. https://doi.org/10.4209/aaqr.2015.12.0682

Hasheminassab, S., Daher, N., Shafer, M. M., Schauer, J. J., Delfino, R. J. & Sioutas, C. (2014). Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2.5) in retirement communities of the Los Angeles Basin. Science of the Total Environment, 490, 528–537. https://doi.org/10.1016/j.scitotenv.2014.05.044

Hatzopoulou, M., Weichenthal, S., Dugum, H., Pickett, G., Miranda-Moreno, L., Kulka, R., Andersen, R. & Goldberg, M. (2013). The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. Journal of Exposure Science and Environmental Epidemiology, 23(1), 46–51. https://doi.org/10.1038/jes.2012.85

Irga, P. J. & Torpy, F. R. (2016). Indoor air pollutants in occupational buildings in a sub-tropical climate: Comparison among ventilation types. Building and Environment, 98, 190–199. https://doi.org/10.1016/j.buildenv.2016.01.012

Jamriska, M., Morawska, L. & Ensor, D. (2003). Control strategies for sub-micrometer particles indoors: model study of air filtration and ventilation. Indoor Air, 13, 96–105. https://doi.org/10.1034/j.1600-0668.2003.00184.x

Janssen, N. A. H., Van Vliet, P. H. N., Aarts, F., Harssema, H. & Brunekreef, B. (2001). Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmospheric Environment, 35(22), 3875–3884. https://doi.org/10.1016/S1352-2310(01)00144-3

Jones, A. P. (1999). Indoor air quality and health. Atmospheric environment, 33(28), 4535–4564. https://doi.org/10.1016/S1352-2310(99)00272-1

Karagulian, F., Belis, C. A., C. Dora, C. F., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H. & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483. https://doi.org/10.1016/j.atmosenv.2015.08.087

Kubba, S. (2009). LEED practices, certification, and accreditation handbook. Butterworth-Heinemann.

Larsen, B. (2003). Hygiene and Health in Developing Countries: Defining Priorities through Cost-Benefit Assessments. International Journal of Environmental Health Research, 13(Sup1), S37–S46. https://doi.org/10.1080/0960312031000122172

Li, H., Qin, Y. & Feng, G. (2017). The analysis of PM2.5 Outdoor Fine Particulate Matter Impact on Air Quality in the University Libraries Reading Room in Winter of North China. Procedia Engineering, 205, 3346–3352. https://doi.org/10.1016/J.PROENG.2017.09.836

Li, J., Zhang, H., Chao, C.-Y., Chien, C.-H., Wu, C.-Y., Heng, C., Chen, L.-J. & Biswas, P. (2020). Integrating low-cost air quality sensor networks with fixed and satellite monitoring systems to study ground-level PM2.5. Atmospheric Environment, 223, 117293. https://doi.org/10.1016/j.atmosenv.2020.117293

Liang, C.-S., Duan, F.-K., He, K.-B., & Ma, Y.-L. (2016). Review on recent progress in observations, source identifications and countermeasures of PM 2.5. Environment Inter­national, 86, 150–170. https://doi.org/10.1016/j.envint.2015.10.016

Liu, Z., Ye, W. & Little, J. C. (2013). Predicting emissions of volatile and semivolatile organic compounds from building materials: a review. Building and Environment, 64, 7–25. https://doi.org/10.1016/j.buildenv.2013.02.012

Marlier, M. E., Defries, R. S., Kim, P. S., Gaveau, D. L. A., Koplitz, S. N., Jacob, D. J., Mickley, L. J., Margono, B. A. & Myers, S. S. (2015). Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environmental Research Letters, 10(5), 1–11. https://doi.org/10.1088/1748-9326/10/5/054010

Martins, N. R. & Da Graça, G. (2018). Impact of PM2.5 in indoor urban environments: A review. Sustainable Cities and Society, 42, 259–275. https://doi.org/10.1016/j.scs.2018.07.011

Mata, T. M., Felgueiras, F., Martins, A. A., Monteiro, H., Ferraz, M. P., Oliveira, G. M., & Silva, G. V. (2022). Indoor air quality in elderly centers: Pollutants emission and health effects. Environments, 9(7), 1–25. https://doi.org/10.3390/environments9070086

McCreddin, A., Gill, L., Broderick, B. & McNabola, A. (2013). Personal exposure to air pollution in office workers in Ireland: Measurement, analysis and implications. Toxics, 1(1), 60–76. https://doi.org/10.3390/toxics1010060

Mohammadyan, M. & Shabankhani, B. (2013). Indoor PM1, PM2.5, PM10and outdoor PM2.5 concentrations in primary schools in sari, Iran. Arhiv Za Higijenu Rada i Toksikologiju, 64(3), 371–377. https://doi.org/10.2478/10004-1254-64-2013-2346

Morawska, L., Buonanno, G., Mikszewski, A. & Stabile, L. (2022). The physics of respiratory particle generation, fate in the air, and inhalation. Nature Reviews Physics, 4, 723–734. https://doi.org/10.1038/s42254-022-00506-7

Qu, Y., Wang, H., Zhu, L. & Ji, J. (2017). Concentration Distribution and Control strategy of Indoor PM2.5. Procedia Engineering, 205, 1606–1611. https://doi.org/10.1016/J.PROENG.2017.10.288

Quang, T. N., He, C., Morawska, L. & Knibbs, L. D. (2013). Influence of ventilation and filtration on indoor particle concentrations in urban office buildings. Atmospheric environment, 79, 41–52. https://doi.org/10.1016/j.atmosenv.2013.06.009

Ramírez, N., Özel, M. Z., Lewis, A. C., Marcé, R. M., Borrull, F. & Hamilton, J. F. (2014). Exposure to nitrosamines in thirdhand tobacco smoke increases cancer risk in non-smokers. Environment international, 71, 139–147. https://doi.org/10.1016/j.envint.2014.06.012

Rivas, I., Viana, M., Moreno, T., Bouso, L., Pandolfi, M., Alvarez-Pedrerol, M., Forns, J., Alastuey, A., Sunyer, J. & Querol, X. (2015). Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmospheric Environment, 106, 129–138. https://doi.org/10.1016/j.atmosenv.2015.01.055

Rivas, I., Viana, M., Moreno, T., Pandolfi, M., Amato, F., Reche, C., Bouso, L., Àlvarez-Pedrerol, M., Alastuey, A., Sunyer, J. & Querol, X. (2014). Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environment International, 69, 200–212. https://doi.org/10.1016/j.envint.2014.04.009

Salmatonidis, A., Ribalta, C., Sanfélix, V., Bezantakos, S., Biskos, G., Vulpoi, A.Simion, S., Monfort, E. & Viana, M. (2019). Workplace exposure to nanoparticles during thermal spraying of ceramic coatings. Annals of work exposures and health, 63(1), 91–106. https://doi.org/10.1093/annweh/wxy094

Song, P., Wanga, L., Hui, Y. & Li, R. (2015). PM2.5 Concentrations Indoors and Outdoors in Heavy Air Pollution Days in Winter. Procedia Engineering, 121, 1902–1906. https://doi.org/10.1016/j.proeng.2015.09.173

Targino, A. C., Gibson, M. D., Krecl, P., Rodrigues, M. V, Dos Santos, M. & Corrêa, M. (2016). Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environmental Pollution, 218, 475–486. https://doi.org/10.1016/j.envpol.2016.07.027

Villanueva, F., Tapia, A., Amo-Salas, M., Notario, A., Cabanas, B. & Martínez, E. (2015). Levels and sources of volatile organic compounds including carbonyls in indoor air of homes of Puertollano, the most industrialized city in central Iberian Peninsula. Estimation of health risk. International journal of hygiene and environmental health, 218(6), 522–534. https://doi.org/10.1016/j.ijheh.2015.05.004

Watson, J. G., & Chow, J. (1998). Guideline on speciated particulate monitoring. U.S. Environmental Protection Agency. https://www3.epa.gov/ttnamti1/files/ambient/pm25/spec/drispec.pdf

Wichmann, J., Lind, T., Nilsson, M. A. M. & Bellander, T. (2010). PM2.5, soot and NO2 indoor-outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmospheric Environment, 44(36), 4536–4544. https://doi.org/10.1016/j.atmosenv.2010.08.023

WHO. (2018a). Calidad del aire ambiente (exterior) y salud. http://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

WHO. (2018b). Exposure to ambient air pollution from particulate matter for 2016. Version 2 April 2018. https://cdn.who.int/media/docs/default-source/air-quality-database/aqd-2018/aap_exposure_apr2018_final.pdf?sfvrsn=86d2fad9_3

WHO. (2018c). Organización mundial de la salud. Calidad del aire ambiente (exterior) y salud. http://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

WHO. (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre [WHO/SDE/PHE/OEH/06.02]. WHO https://apps.who.int/iris/handle/10665/69478

WHO. (1990). Indoor air quality: biological contaminants (No. 31). WHO Regional Office for Europe [ICP/CEH 073]. WHO. https://apps.who.int/iris/handle/10665/260557

WHO. (1989). Indoor air quality: organic pollutants. Environmental Technology Letteres, 10(9), 855–858. https://doi.org/10.1080/09593338909384805

Wolkoff, P. & Kjærgaard, S. K. (2007). The dichotomy of relative humidity on indoor air quality. Environment international, 33(6), 850–857. https://doi.org/10.1016/j.envint.2007.04.004

Yang, S., Mahecha, S. D., Moreno, S. A. & Licina, D. (2022). Integration of indoor air quality prediction into healthy building design. Sustainability, 14(13), 1–18. https://doi.org/10.3390/su14137890

Zhang, J. & Smith, K. R. (2003). Indoor air pollution: a global health concern. British medical bulletin, 68(1), 209–225. https://doi.org/10.1093/bmb/ldg029

Published

2022-12-01

How to Cite

da Silva Civeira, M. ., Dalmora, A. C. ., do Nascimento de Campos, S. ., & Gaspar Hernández Palma, H. . (2022). An overview of urban environmental pollution in external and internal environments by PM2.5 particulate matter and the sick building syndrome. LADEe Latin American Developments in Energy Engineering, 3(2), 23–34. https://doi.org/10.17981/ladee.03.02.2022.3