Análisis no-lineal de nudos de concreto sin refuerzo.

Autores/as

  • Daniel Ricardo Salinas Guayacundo Fundación Universitaria Juan de Castellanos, Tunja(Colombia) https://orcid.org/0000-0002-1257-5747
  • Roberto Tomas Leon Saenz Virginia Polytechnic Institute and State University (VirginiaTech), (USA)

DOI:

https://doi.org/10.17981/ingecuc.16.1.2020.09

Palabras clave:

análisis no-lineal, pórticos de gravedad, pórticos de concreto reforzado, nudos de concreto no-reforzados

Resumen

Introducción- El Sistema estructural Pórticos de Concreto Reforzado (PCR) constituye una parte significativa del inventario de edificaciones en zonas sísmicamente activas en el mundo. Muchas de las edificaciones construidas antes de la década de los 80’s fueron diseñadas y construidas con poca, o ninguna consideración de cargas sísmicas. Cuando el nudo de concreto reforzado no se ha diseñado competentemente puede convertirse en el eslabón débil del sistemas de PCR. La presencia de nudos sin refuerzo, aun es común en países emergentes localizados en Asia y América Latina. Los nudos tienen un impacto significativo en el comportamiento de PCR. Las metodologías relacionadas con el análisis de nudos de concreto pueden catalogarse como aproximadas, o muy complejas, o de enfoque fenomenológico. Desafortunadamente la mayoría de ellas carece de la simplicidad, estabilidad, y practicidad requerida para evaluar el comportamiento de los nudos en PCR.  Este artículo presenta una alternativa analítica aplicable a este tipo de elementos estructurales.

Objetivo- El propósito del presente artículo es presentar un método analítico modificado aplicable al análisis no lineal de nudos no reforzados en estructuras de PCR.

Metodología- El método presentado se basa en el trabajo analítico y experimental encontrado en [1], el cual es modificado para seguir exactamente la nomenclatura de [2]. En el modelo analítico, el nudo es representado a través de: (1) elementos rígidos en cruz para idealizar la geometría del nudo, (2) un resorte rotacional con una curva empírica de comportamiento tetra-lineal localizado en la mitad de los elementos rígidos para representar el comportamiento en cortante del nudo, y (3) las vigas y columnas que llegan al nudos, son modeladas con análisis seccional basado en fibras, con 5 puntos de integración; con la finalidad de incorporar el comportamiento no-lineal de los elementos que llegan al nudo. El modelo propuesto fue implementado en la plataforma OpenSEES y al mismo tiempo se validó con el resultado de 13 ensayos de laboratorio encontrados en la literatura de nudos carentes de acero de refuerzo.

Resultados- El modelo propuesto puede capturar adecuadamente la capacidad a cortante del nudo. Al comparar los resultados analíticos con 13 resultados de nudos de concreto encontrados en la literatura, se encontró una diferencia en la capacidad del 2% con una desviación estándar del 11%. En relación al comportamiento del nudo ante carga cíclica se observó que se captura en forma adecuada: la rigidez inicial, resistencia, degradación de la resistencia, rigidez de recarga y capacidad antes y después del pico de resistencia.

Conclusiones- El método propuesto presenta una adecuada correlación con los resultados de laboratorio estudiados. La metodología propuesta competentemente captura la capacidad del nudo a cortante, a pesar de las modificaciones incorporadas, sin mencionar las incertidumbres asociadas a los materiales, resultados de laboratorio, y tolerancias. Se espera que el procedimiento presentado en el presente documento contribuya, de una forma práctica, en la incorporación de la flexibilidad del nudo en PCR diseñados primariamente para cargas gravitacionales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

S. Park & K. Mosalam, “Simulation of Reinforced Concrete Frames with Nonductile Beam-Column Joints,” Earthq Spectra, vol. 29, pp. 233–257, Feb. 2013. [Online . https://doi.org/10.1193/1.4000100

ACI-ASCE Committe 352, Recommendations for design of beam-column connections in monolithic reinforced concrete structures, ACI 352R-02, Farmingtn Hls, USA: ACI, 1991.

ACI-ASCE Committe 318, Building Code Requirements for Structural Concrete, ACI-318-89, Farmington Hills, USA: ACI, 1989.

R. Clough, K. Benuska & E. Wilson, “Inelastic earthquake response of tall buildings,” in Proceedings of the Third World Conference on Earthquake Engineering, WCEE, Auckland, NZL, 1965, pp. II-68 to II-89.

T. Takeda, M. A. Sozen & N. N. Nielsen, “Reinforced concrete response to simulated earthquakes”, Ohbayashi-Gumi Tech. Rsrch. TYO, JP, Rep, no. 5, Jan. 1970.

M. Saiidi & M. Sozen, “Simple and complex models for nonlinear seismic response of reinforced concrete structures”, Struct. Rsrch. Ser, no. 465, Aug. 1979.

A. Ilki & N. Kumbasar, “Theoretical and experimental energy dissipation of reinforced concrete,” in Proceedings of the 3rd Japan-Turkey Workshop on Earthquake Engineering, JICA, Istanbul, TR, 2000, vol. 1, pp. 167–177.

H. L. Feghali, “Seismic performance of flexible concrete structures,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, 1999.

R. W. Clough & S. B. Johnston, Effect of Stiffness Degradation on Earthquake Ductility Requirements. Hoboken, USA: Wiley, 1966.

L. F. Ibarra, R. A. Medina & H. Krawinkler, “Hysteretic models that incorporate strength and stiffness deterioration”, Earthq. Eng. Struct. D, vol. 34, pp. 1489–1511, Jan. 2005. https://doi.org/10.1002/eqe.495

D. G. Lignos & H. Krawinkler, “Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading,” J. Struct. Eng, ASCE, vol. 137, no. 11, pp. 1291–1302, Nov. 2011. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376

M. F. Giberson, “The response of nonlinear multi-story structures subjected to earthquake excitation,” Dissertation Ph.D, Caltech, Pasadena, CA, 1969.

S. Otani, “Behavior of Multistory Reinforced Concrete Frames During Earthquakes,” Dissertation Thesis, Croquet UMI Dissertations, Ann Arbours, MI, 1973.

J. C. Anderson & W. H. Townsend, “Models for RC Frames with Degrading Stiffness,” J. Struct. Div, vol. 103, no. 2, pp. 236–2376, Jan. 1977.

F. C. Filippou, E. P. Popov & V. V. Bertero, “Modeling of R/C Joints under Cyclic Excitations,” J. Struct. Eng, vol. 109, no. 11, pp. 2666–2684, 1983. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:11(2666)

S. E. El-Metwally & W. F. Chen, “Moment-rotation modeling of reinforced concrete beam-column connections,” ACI Struct. J, vol. 85, no. 4, pp. 384–394, May. 1988. https://doi.org/10.14359/2656

M. T. De Risi, P. Ricci & G. M. Verderame, “Modelling exterior unreinforced beam-column joints in seismic analysis of non-ductile RC frames,” Earthq. Eng. Struct. D, vol. 46, pp. 899–923, Nov. 2016. https://doi.org/10.1002/eqe.2835

N. Mitra, “An analytical study of reinforced concrete beam-column joint behavior under seismic loading,” Dissertation Thesis, UW, WA, USA, 2007.

A. Sharma, R. Eligehausen & G. R. Reddy, “A New Model to Simulate Joint Shear Behavior of Poorly Detailed Beam–Column Connections in RC Structures under Seismic Loads, Part I: Exterior Joints,” Eng. Struct, vol. 33, no. 3, pp. 1034–1051, Mar. 2011. https://doi.org/10.1016/j.engstruct.2010.12.026

A. Ghobarah & A. Biddah, “Dynamic analysis of reinforced concrete frames including joint shear deformation,” Eng. Struct, vol. 21, no. 11, pp. 971–987, Jan. 1999. https://doi.org/10.1016/S0141-0296(98)00052-2

T. Hsu, “Softened truss model theory for shear and torsion,” ACI Struct. J, vol. 85, no. 6, pp. 624–634, May. 1988. https://doi.org/10.14359/2740

T. Kaku & S. Morita, “Bond behavior of beam bars in the joint of reinforced concrete frame,” in Annual Meeting of the Architectural Institute of Japan, AIJ, TYO, JP, Sep. 1978, pp. 1777–1778.

F. J. Vecchio & M. P. Collins, “The modified compression-field theory for reinforced concrete elements subjected to shear,” ACI, vol. 83, no. 2, pp. 219–231, Mar. 1986. https://doi.org/10.14359/10416

Y. S. Chung, C. Meyer & M. Shinozuka, “Seismic damage assessment of reinforced concrete members”. SUNY at Buffalo, Buffalo, NY, USA, Tech. Rep. NCEER-87-0022, Oct. 1987.

A. Biddah & A. Ghobarah, “Modeling of shear deformation and bond slip in reinforced concrete joints”, Struct. Eng. Mech, vol 7, no. 4, pp. 413–432, Apr. 1999. https://doi.org/10.12989/sem.1999.7.4.413

R. Eligehausen, E. Popov & V. Bertero, “Local bond stress slip relationship of deformed bars under generalized excitations”, PEER, CALTECH, Covina, USA, Tech. Rep. UCB/EERC, 1983.

F. Filippou, “A simple model for reinforcing bar anchorages under cyclic excitations,” J. Struct. Eng. ASCE, vol. 112, no. 7, pp. 1639–1659, Feb. 1986. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:7(1639)

M. Elmorsi, M. R. Kianoush & W. K. Tso, “Modeling bond-slip deformations in reinforced concrete beam-column joints,” Can. J Cit. Eng, vol. 27, no. 3, pp. 490–505, Jun. 2000. https://doi.org/10.1139/l99-085

E. Giuriani, G. Plizzari & C. Schumm, “Role of stirrups and residual tensile strength of cracked concrete on bond,” J. Struct. Eng. ASCE, vol. 117, no. 1, pp. 1–18, Jan. 1969. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(1)

D. Kent & R. Park, “Flexural members with confined concrete,” J. Struct. Div, ASCE, vol. 113, no. 10, pp. 2160–2173, Aug. 1971.

M. Youssef & A. Ghobarah, “Modelling of RC beam-column joints and structural walls,” J. Earthq. Eng, vol. 5, no. 1, pp. 93–111, Jan. 2001. https://doi.org/10.1080/13632460109350387

Y. Park & A. Ang, “Seismic damage analysis of reinforced concrete buildings,” J. Struct. Eng, vol. 111, no. 4, pp. 740–757, Apr. 1985. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(740)

L. N. Lowes & A. Altoontash, “Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading,” J. Struct. Eng, vol. 129, no. 12, pp. 1686–1697, Dic. 2003. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1686)

M. Rahnama & H. Krawinkler, “Effects of soft soil and hysteresis model on seismic demands,” John A. Blume Earthquake Engineering Center, SU, USA, BLUME-108, 1993.

A. Altoontash, “Simulation and damage models for performance assessment of reinforced concrete beam-column joints,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, Aug. 2004.

S. Morita & T. Kaku, “Bond slip relationship under repeated loading,” Transactions of the AIJ, vol. 229, pp. 15–24, Jan. 1975. https://doi.org/10.3130/aijsaxx.229.0_15

R. Park, M. Priestley & W. Gill, “Ductility of square confined reinforced concrete columns,” J. Struct. Div. ASCE, vol. 108, pp. 929–950, Jan. 1982.

J. LaFave & M. Shin, “Discussion of “Modeling reinforced concrete beam-column joints subjected to cyclic loading” by L. N. Lowes & A. Altoontash,” J. Struct. Eng. ASCE, vol. 131, no. 6, pp. 992–993, Jun. 2005. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(992)

S. Tajiri, H. Shiohara & F. Kusuhara, “A new macroelement of reinforced concrete beam column joint for elasto-plastic plane frame analysis,” in 8th National Conference of Earthquake Engineering, NCEE, SFO, USA, 2006, no. 1.

F. McKenna, “OpenSees: A Framework for Earthquake Engineering Simulation,” Comp. Sci. Eng., vol. 13, no. 4, pp. 58–66, Jun. 2011. https://doi.org/10.1109/MCSE.2011.66

P. Shin & J. LaFave, “Testing and Modeling For Cyclic Joint Shear Deformations in RC Beam-Column Connections,” in 13th World Conference on Earthquake Engineering, WCEE, Vancouver, CA, Aug. 2004, Paper 0301.

F. Kusuhara, H. Shiohara & S. Tajiri, “A New Macro Element of Reinforced Concrete Beam-Column Joint for Elasto-Plastic Plane Frame Analysis,” in 8th U.S. National Conference on Earthquake Engineering, NCEE, SFO, USA, Apr. 2006, Paper 674.

T. Saito & M. Kikuchi, “A New Analytical Model for Reinforced Concrete Beam-Column Joints Subjected to Cyclic Loading” in 15th World Conference on Earthquake Engineering, WCEE, Lisboa, PT, Sep. 2012.

P. Zhang, S. Hou & J. Ou, “A beam–column joint element for analysis of reinforced concrete frame structures,” Eng. Struct, vol. 118, pp. 125–136, Jul. 2016. https://doi.org/10.1016/j.engstruct.2016.03.030

L. N. Lowes, A. Altoontash & N. Mitra, “Closure to “Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading” by Laura N. Lowes and Arash Altoontash,” J. Struct Eng, vol. 131, no. 6, pp. 993–994, Dec. 2003.

O. C. Celik, “Probabilistic Assessment of Non-Ductile Reinforced Concrete Frames Susceptible to Mid-America Ground Motions,” Dissertation Thesis, Georgia Tech, Atlanta, GA, USA, 2007.

O. C. Celik & B. R. Ellingwood, “Seismic fragilities for non-ductile reinforced concrete frames - Role of aleatoric and epistemic uncertainties,” Struct. Saf, vol. 32, no. 1, pp. 1–12, Jan. 2010. https://doi.org/10.1016/j.strusafe.2009.04.003

W. M. Hassan, “Analytical and Experimental Assessment of Seismic Vulnerability of Beam-Column Joints without Transverse Reinforcement in Concrete Buildings,” Dissertation Thesis, UCB, Berkeley, CA, USA, 2011.

J. S. Jeon, R. DesRoches, I. Brilakis & L. Lowes, “Modeling and Fragility Analysis of Non-Ductile Reinforced Concrete Buildings in Low-to-Moderate Seismic Zones,” in ASCE Structures Congress, ASCE, Chicago, USA, 2012, vol. 2199. https://doi.org/10.1061/9780784412367.193

S. Park & K. Mosalam, “Analytical Model for Predicting Shear Strength of Unreinforced Exterior Beam-Column Joints,” ACI Struct J, vol. 109, no. 2, pp. 149–159, Mar. 2012. https://doi.org/10.14359/51683626

F. Charney & R. Johnson, “The Effect of the Joint Deformations on the Drift of the Steel Frame Structures,” KKBNA, Inc., Consulting Engineers, Oct. 1986.

A. C. Birely, L. N. Lowes & D. E. Lehman, “A model for the practical nonlinear analysis of reinforced-concrete frames including joint flexibility,” Eng. Struct, vol. 34, no. 1, pp. 455–465, Jan. 2012. https://doi.org/10.1016/j.engstruct.2011.09.003

S. Park & K. Mosalam, “Parameters for shear strength prediction of exterior beam–column joints without transverse reinforcement,” Eng. Struct, vol. 36, pp. 198–209, Mar. 2012. https://doi.org/10.1016/j.engstruct.2011.11.017

H. F. Wong, “Shear strength and seismic performance of non-seismically designed reinforced concrete beam-column joints,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, 2005.

S. Park, “Experimental and Analytical Studies on Old Reinforced Concrete Buildings with Seismically Vulnerable Beam-Column Joints,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, 2010.

ASCE 41, Seismic Rehabilitation of Existing Buildings. Reston, USA: ASCE, 2006.

Publicado

2020-01-28

Cómo citar

Salinas Guayacundo, D. R., & Leon Saenz, R. T. (2020). Análisis no-lineal de nudos de concreto sin refuerzo. Inge Cuc, 16(1), 129–140. https://doi.org/10.17981/ingecuc.16.1.2020.09

Número

Sección

Artículos