Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece

Authors

DOI:

https://doi.org/10.17981/ingecuc.11.2.2015.07

Keywords:

Incremental Sheet Forming, Forming Die, Computerized Numerical Control (CNC), Computer Aided Manufacturing (CAM), Computer Aided Design (CAD) Die-less SPIF-DPIF, Aluminum Alloy 1100

Abstract

Over time the process of incremental deformation Die-less has been developed in many ways to meet the needs of flexible production with no investment in tooling and low production costs. Two of their configurations are the SPIF (Single point incremental forming) and DPIF (Double point Incremental forming) technique. The aim of this study is to compare both techniques with the purpose of exposing their advantages and disadvantages in the production of industrial parts, as well as to inform about Die-less as an alternative manufacturing process. Experiments with the exhaust pipe cover of a vehicle are performed, the main process parameters are described, and formed workpieces without evidence of defects are achieved. Significant differences between the two techniques in terms of production times and accuracy to the original model are also detected. Finally, it is suggested when is more convenient to use each of these.

Downloads

Download data is not yet available.

Author Biography

Adrian José Benitez Lozano, Universidad EAFIT

Magister en Ingeniería, Especialista en rediseño de productos e Ingeniero de Producción. Docente e investigador en procesos de transformación industriales

References

[1] S. Matsubara, “Incremental Backward Bulge Forming of a Sheet Metal with a Hemispherical Head Tool,” J. J.S.T.P., vol. 35, no. 406, pp. 1311 – 1316, 1994.

[2] G. Páramo Bermúdez and A. Benítez Lozano, “Deformación incremental de lámina sin matriz (DIELESS) como alternativa viable a procesos de conformación de lámina convencionales,” INGE CUC, vol. 9, no. 1, pp. 115–128, Jul. 2013.

[3] A. García and G. Páramo, “Análisis del comportamiento y caracterización del Single Point Incremental Forming utilizando tecnología de control numérico para un caso de estudio en un componente del mobiliario de exteriores”, M.S thesis, Dept. Ing. Mec., Univ. EAFIT, Medellín, Colombia, 2011.

[4] M. Amino, M. Mizoguchi, Y. Terauchi, and T. Maki, “Current Status of ‘Dieless’ Amino’s Incremental Forming,” Procedia Eng., vol. 81, pp. 54–62, 2014. DOI: 10.1016/j.proeng.2014.09.128

[5] P. Roux, “Machine for shaping sheet metal,” US2945528 A, 14-Jan-1960.

[6] E. Leszak, “Apparatus and process for incremental dieless forming,” US3342051 A, 19-Sep-1967.

[7] H. Iseki, K. Kato, And S. Sakamoto, “Flexible and Incremental Sheet Metal Bulging using a Path-Controlled Spherical Roller.,” Trans. Japan Soc. Mech. Eng. Ser. C, vol. 58, no. 554, pp. 3147–3155, Jan. 1992. DOI: 10.1299/kikaic.58.3147

[8] I. Paniti, “A novel, single-robot based two sided incremental sheet forming system,” in 45th International Symposium on Robotics , ISR 2014 and 8th German Conference on Robotics, ROBOTIK 2014, pp. 547-553, 2014.

[9] P. Gabriel and B. Adrian, “Developing an experimental case in aluminium foils 1100 to determine the maximum angle of formability in a piece by Dieless-SPIF process,” IOP Conf. Ser. Mater. Sci. Eng., vol. 65, no. 1, p. 1-10, Jul. 2014. DOI:10.1088/1757-899X/65/1/012027

[10] S. Arango Botero and P. Arena Espinosa, “Estudio del comportamiento de lámina metálica en el proceso incremental dieless forming en dos puntos de apoyo (herramienta y molde),” M.S thesis, Dept. Ing. Prod., Univ. EAFIT, Medellín, Colombia, 2011.

[11] S. Kalpakjian and S. R. Schmid, Manufactura, Ingeniería Y Tecnología, 5th ed. Mexico:Pearson, 2008.

[12] W. Smith, Ciencia e ingeniería de materiales, 3rd ed. España: McGrawHill, 2004.

[13] T. B. Stoughton and J. W. Yoon, “A new approach for failure criterion for sheet metals,” Int. J. Plast., vol. 27, no. 3, pp. 440–459, Mar. 2011. DOI: 10.1016/j.ijplas.2010.07.004

[14] C. Vallellano, D. Morales, A. J. Martinez, and F. J. Garcia-Lomas, “On the Use of Concave-Side Rule and Critical-Distance Methods to Predict the Influence of Bending on Sheet-Metal Formability,” Int. J. Mater. Form., vol. 3, no. S1, pp. 1167–1170, Jun. 2010. DOI: 10.1007/s12289-010-0980-0

[15] M. B. Silva and P. A. F. Martins, “Two-Point Incremental Forming with Partial Die: Theory and Experimentation,” J. Mater. Eng. Perform. vol. 22, no. 4, pp. 1018–1027, Oct. 2012. DOI: 10.1007/S11665-012-0400-3

[16] J. H. Wu and Q. C. Wang, “Comparison of the Geometric Accuracy by DSIF Toolpath with SPIF Toolpath,” Appl. Mech. Mater., vol. 494–495, pp. 497–501, Feb. 2014.DOI: 10.4028/www.scientific.net/AMM.494-495.497

[17] J. Smith, R. Malhotra, W. K. Liu, and J. Cao, “Deformation mechanics in single-point and accumulative double-sided incremental forming,” Int. J. Adv. Manuf. Technol., vol. 69, no. 5–8, pp. 1185–1201, Jun. 2013.. DOI: 10.1007/S00170-013-5053-3

[18] C. Radu, I. Cristea, E. Herghelegiu, and S. Tabacu, “Improving the Accuracy of Parts Manufactured by Single Point Incremental Forming,” Appl. Mech. Mater., vol. 332, pp. 443–448, Jul. 2013.. DOI: 10.4028/www.scientific.net/AMM.332.443

Downloads

Published

2015-09-28

How to Cite

Benitez Lozano, A. J., Páramo Bermudez, G. J., & Bustamante Correa, F. A. (2015). Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece. INGE CUC, 11(2), 68–73. https://doi.org/10.17981/ingecuc.11.2.2015.07

Most read articles by the same author(s)