Machine Learning techniques applied to the consumption of illegal psychoactive substances: A systematic mapping

Authors

  • Jefferson Eduardo Campo Yule Universidad del Cauca. Popayán, (Colombia)
  • Danny alberto Díaz Mage Universidad del Cauca. Popayán, (Colombia)
  • Hugo Armando Ordoñez Universidad del Cauca, Popayán, (Colombia)

DOI:

https://doi.org/10.17981/ingecuc.19.2.2023.08

Keywords:

machine Learning, illegal psychoactive substances, illegal drugs, treatment, predictive models, new illegal psychoactive substances

Abstract

Introduction— The consumption of illicit psychoactive substances is a problem experienced every day, by people of different ages who have been involved in it, highlighting that many of these substances generate disorders such as, for example: Marijuana or cannabis: its consumption affects brain function directly, and particularly the parts of the brain responsible for memory, learning, attention, decision making. Bazuco: it is a toxic substance, which main risks of consumption are reflected in the neurological deterioration and in the organism, and its dissolution in the bloodstream is very fast, an aspect that makes it very addictive. Cocaine: its consumption, directly affects the nervous system and the rest of the organism immediately, these affectations include vasoconstriction, mydriasis, hyperthermia, tachycardia and hypertension. Heroin: is a highly addictive substance, initially, its effects are very pleasant, which leads to a continuous and repetitive consumption behavior, in addition, it produces sensations of dry mouth, reddening and heating of the skin, heaviness in arms and legs, nausea and vomiting, intense itching and clouding of the mental faculties.

Objective— This problem is something that stands out a lot and has a great impact on young people according to the context they are in, since nowadays it is very easy to obtain this type of substances, therefore, a series of works have been proposed that address this problem from artificial intelligence. 

Methodology— The current study is a review of 50 publications related to the use of ML methods and techniques applied to the consumption of illicit psychoactive substances.

Results— From the publications included, common themes were found, so a summary is made of the articles selected for each theme and the methods adopted are briefly described, as well as a comparison between them, noting the methods used, their results and other important factors of the application or model in different areas, and concluding with a series of proposals on the lines that could guide future research in this field.

Downloads

Download data is not yet available.

References

PAHO. “Abuso de sustancias”, (Consultado en mayo 2, 2023). [En línea . Disponible en https://www.paho.org/es/temas/abuso-sustancias

ONU. “Comunicado de prensa. El Informe Mundial sobre las Drogas 2022 de la UNODC destaca las tendencias del cannabis posteriores a su legalización, el impacto ambiental de las drogas ilícitas y el consumo de drogas entre las mujeres y las personas jóvenes”, junio 27, 2022. [En línea. Disponible en https://www.unodc.org/unodc/es/press/releases/2022/June/unodc-world-drug-report-2022-highlights-trends-on-cannabis-post-legalization--environmental-impacts-of-illicit-drugs--and-drug-use-among-women-and-youth.html

MinSalud, Política Integral para la Prevención y Atención del Consumo de Sustancias Psicoactivas. BO, CO: MinSalud, 2019. Recuperado de https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/politica-prevencion-atencion-spa.pdf

H. Zhou, J. Tang & H. Zheng, “Editorial Machine Learning for Medical Applications,” Sci. World J., pp. 1–2, Nov. 2014. https://doi.org/10.1155/2015/825267

D. Carrizo y J. Rojas, “Clasificación de prácticas de educción de requisitos en desarrollos ágiles: un mapeo sistemático”, Ingeniare Rev. Chilena Ing., vol. 24, no. 4, pp. 654–662, Mar. 2016. http://dx.doi.org/10.4067/S0718-33052016000400010

B. Kitchenham, “Procedures for Performing Systematic Reviews,” KEE, UK: KU, Joint Technical Report, 2004. Available from https://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf

X. Gu, B. Yang, S. Gao, L. Yan, D. Xu & W. Wang, “Application of bi-modal signal in the classification and recognition of drug addiction degree based on machine learning,” Math. Biosci. Eng., vol. 18, no. 5, pp. 6926– 6940, Aug. 2021. https://doi.org/10.3934/MBE.2021344

M. Hassan, Z. Peya, S. Zaman, J. Angon, A. Keya & A. Dulla, “A Machine Learning Approach to Identify the Correlation and Association among the Students' Drug Addict Behavior,” presented at 11th International Conference on Computing, Communication and Networking Technologies, ICCCNT, KGR, IN, 1-3 Jul. 2020. https://doi.org/10.1109/ICCCNT49239.2020.9225355

M. Nesa, T. Shaha & Y. Yoon, “Prediction of juvenile crime in Bangladesh due to drug addiction using machine learning and explainable AI techniques,” J. Comput. Soc. Sci., vol. 5, no. 2, pp. 1467–1487, Aug. 2022. https://doi.org/10.1007/s42001-022-00175-7

A. Arif, S. Sany, F. Sharmin, S. Rahman & T. Habib, “Prediction of addiction to drugs and alcohol using machine learning: A case study on Bangladeshi population,” Int. J. Electr. Comput. Eng., vol. 11, no. 5, pp. 4471–4480, Mar. 2021. https://doi.org/10.11591/ijece.v11i5.pp4471-4480

H. Gong, C. Xie, C. Yu, N. Sun, H. Lu & Y. Xie, “Psychosocial factors predict the level of substance craving of people with drug addiction: A machine learning approach,” Int. J. Environ. Res. Public Health, vol. 18, no. 22, pp. 1–12, Nov. 2021. https://doi.org/10.3390/ijerph182212175

U. Islam, E. Haque, D. Alsalman, M. Islam, M. Moni & I. Sarker, “A Machine Learning Model for Predicting Individual Substance Abuse with Associated Risk-Factors,” Ann. Data Sci., pp. 1–28, Mar. 2022. https://doi.org/10.1007/s40745-022-00381-0

N. Zulkifli, Z. Cob, A. Latif & S. Drus, “A Systematic Review of Machine Learning in Substance Addiction,” in 8th International Conference on Information Technology and Multimedia, ICIMU, SLR, MY, 24-26 Aug. 2020. https://doi.org/10.1109/ICIMU49871.2020.9243581

J. Mollick & H. Kober, “Computational models of drug use and addiction: A review,” J. Abnorm. Psychol., vol. 129, no. 6, pp. 544–555, Aug. 2020. https://doi.org/10.1037/abn0000503

Y. Choi & Y. Boo, “Comparing logistic regression models with alternative machine learning methods to predict the risk of drug intoxication mortality,” Int. J. Environ. Res. Public Health, vol. 17, no. 3, pp. 1–10, Jan. 2020. https://doi.org/10.3390/ijerph17030897

K. Mak, K. Lee & C. Park, “Applications of machine learning in addiction studies: A systematic review,” Psychiat. Res., vol. 275, pp. 53–60, May. 2019. https://doi.org/10.1016/j.psychres.2019.03.001

B. Chhetri, L. Goyal & M. Mittal, “How machine learning is used to study addiction in digital healthcare: A systematic review,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 2, pp. 1–17, Mar. 2023. https://doi.org/10.1016/j.jjimei.2023.100175

E. Barenholtz, N. Fitzgerald & W. Hahn, “Machine-learning approaches to substance-abuse research: emerging trends and their implications,” Curr. Opin. Psychiatry, vol. 33, no. 4, pp. 334–342, Jul. 2020. https://doi.org/10.1097/yco.0000000000000611

A. Anggrawan, C. Satria, C. Nuraini, Lusiana, N. Ayu Dasriani & Mayadi, “Machine Learning for Diagnosing Drug Users and Types of Drugs Used”, IJACSA, vol. 12, no. 11, pp. 111–118, Dec. 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121113

R. Vunikili, B. Glicksberg, K. Johnson, J. Dudley, L. Subramanian & K. Shameer, “Predictive Modelling of Susceptibility to Substance Abuse, Mortality and Drug-Drug Interactions in Opioid Patients,” Front. Artif. Intell., vol. 4, pp. 1–10, Oct. 2021. https://doi.org/10.3389/frai.2021.742723

B. Rekabdar, D. Albright, J. McDaniel, S. Talafha & H. Jeong, “From machine learning to deep learning: A comprehensive study of alcohol and drug use disorder,” Healthcare Anal., vol. 2, pp. 1–18, Aug. 2022. https://doi.org/10.1016/j.health.2022.100104

Y. Jing, Z. Hu, P. Fan, Y. Xue, L. Wang, R. Tarter, L. Kirisci, J. Wang, M. Vanyukov & X. Xie, “Analysis of substance use and its outcomes by machine learning I. Childhood Evaluation of Liability to Substance Use Disorder,” Drug Alcohol Depend., vol. 206, no. 3, pp. 1–16, Oct. 2019. https://doi.org/10.1016/j.drugalcdep.2019.107605

Z. Hu, Y. Jing, Y. Xue, P. Fan, L. Wang, M. Vanyukov, L. Kirisci, J. Wang, R. Tarter & X-Q. Xie, “Analysis of substance use and its outcomes by machine learning: II. Derivation and prediction of the trajectory of substance use severity,” Drug Alcohol Depend., vol. 206, pp. 1–10, Jan. 2020. https://doi.org/10.1016/j.drugalcdep.2019.107604

U. Islam, I. Sarker, E. Haque & M. Hoque, “Predicting Individual Substance Abuse Vulnerability using Machine Learning Techniques”, in Hybrid Intelligent Systems, A. Abraham, T. Hanne, O. Castillo, N. Gandhi, T. Rios & T-P.Hong, Eds., CHM, CH: Springer, 2021, pp. 412–421. https://doi.org/10.1007/978-3-030-73050-5_42

Y. Yuan, J. Huang & K. Yan, “Virtual Reality Therapy and Machine Learning Techniques in Drug Addiction Treatment,” presented at 10th International Conference on Information Technology in Medicine and Education, ITME, QGO, CN, 23-25 Aug. 2019. https://doi.org/10.1109/ITME.2019.00062

M. Hasan, G. Young, J. Shi, P. Mohite, L. Young, S. Weiner & Noor-E-Alam, “A machine learning based two- stage clinical decision support system for predicting patients’ discontinuation from opioid use disorder treatment: retrospective observational study,” BMC Med. Inform. Decis. Mak., vol. 21, no. 1, pp. 1–21, Nov. 2021. https://doi.org/10.1186/s12911-021-01692-7

J. Tapia-Galisteo, J. Iniesta, C. Perez-Gandía, G. Garcia-Saez, D. Urgelés, F. Izquierdo & M. Hernando, “Prediction of Cocaine Inpatient Treatment Success Using Machine Learning on High-Dimensional Heterogeneous Data,” IEEE Acc., vol. 8, pp. 218936–218953, Dec. 2020. https://doi.org/10.1109/ACCESS.2020.3041895

M. Symons, G. Feeney, M. Gallagher, R. Young & J. Connor, “Machine learning vs addiction therapists: A pilot study predicting alcohol dependence treatment outcome from patient data in behavior therapy with adjunctive medication,” J. Subst. Abuse Treat., vol. 99, pp. 156–162, Jan. 2019. https://doi.org/10.1016/j.jsat.2019.01.020

M. Nasir, N. Summerfield, A. Oztekin, M. Knight, L. Ackerson & S. Carreiro, “Machine learning-based outcome prediction and novel hypotheses generation for substance use disorder treatment,” J. Am. Med. Inform. Assoc., vol. 28, no. 6, pp. 1216–1224, Feb. 2021. https://doi.org/10.1093/jamia/ocaa350

S. Yip, B. Kiluk & D. Scheinost, “Toward Addiction Prediction: An Overview of Cross-Validated Predictive Modeling Findings and Considerations for Future Neuroimaging Research,” Biol. Psychiatry: Cogn. Neurosci.Neuroimaging, vol. 5, no. 8, pp. 748–758, Aug. 2020. https://doi.org/10.1016/j.bpsc.2019.11.001

J. Tapia, “Propuesta de modelos predictivos en salud mental para la personalización de terapias de rehabilitación en pacientes con adicciones,” Tesis Doctoral, ETSIT, UPM, MD, ES, 2021. Disponible en https://oa.upm.es/68120/

Y. Kobayashi & K. Yoshida, “Automated retention time prediction of new psychoactive substances in gas chromatography,” Proc. Comp. Sci., vol. 207, pp. 654–663, Sept. 2022. https://doi.org/10.1016/j.procs.2022.09.120

J. Klingberg, B. Keen, A. Cawley, D. Pasin & S. Fu, “Developments in high-resolution mass spectrometric analyses of new psychoactive substances,” Arch. Toxicol., vol. 96, no. 4, pp. 949–967, Feb. 2022. https://doi.org/10.1007/s00204-022-03224-2

E. Olesti, I. De Toma, J. Ramaekers, T. Brunt, M. Carbó, C. Fernández-Avilés, P. Robledo, M. Farré, M. Dierssen, Ó. Pozo y R. De La Torre, “Metabolomics predicts the pharmacological profile of new psychoactive substances,” J. Psychopharmacol., vol. 33, no. 3, pp. 347–354, Nov. 2018. https://doi.org/10.1177/0269881118812103

S. Wong, L. Ng, J. Tan & J. Pan, “Screening unknown novel psychoactive substances using GC–MS based machine learning,” Forensic Chem., vol. 34, pp. 1–22, Nov. 2022. https://doi.org/10.1016/j.forc.2023.100499

M. Han, S. Liu, D. Zhang, R. Zhang, D. Liu, H. Xing, D. Sun, L. Gong, P. Cai, W. Tu, J. Chen & Q-N. Hu, “AddictedChem: A Data-Driven Integrated Platform for New Psychoactive Substance Identification,” Mol., vol. 27, no. 12, pp. 1–15, Jun. 2022. https://doi.org/10.3390/molecules27123931

J. Li, Q. Xu, N. Shah & T. Mackey, “A machine learning approach for the detection and characterization of illicit drug dealers on instagram: Model evaluation study,” J. Med. Internet Res., vol. 21, no. 6, pp. 1–14, Feb. 2019. https://doi.org/10.2196/13803

S. Hassanpour, N. Tomita, T. DeLise, B. Crosier & L. Marsch, “Identifying substance use risk based on deep neural networks and Instagram social media data,” Neuropsychopharmacol., vol. 44, no. 3, pp. 487–494, Oct. 2018. https://doi.org/10.1038/s41386-018-0247-x

U. Kursuncu, M. Gaur, U. Lokala, A. Illendula, K. Thirunarayan, R. Daniulaityte, A. Sheth & I. Arpinar, “What’s ur Type? Contextualized Classification of User Types in Marijuana-Related Communications Using Compositional Multiview Embedding,” presented at International Conference on Web Intelligence, ACM/IEEE/WIC, STG, CL, 3-6 Dec. 2018. https://doi.org/10.1109/WI.2018.00-50

T. Mackey, J. Kalyanam, J. Klugman, E. Kuzmenko & R. Gupta, “Solution to detect, classify, and report illicit online marketing and sales of controlled substances via twitter: Using machine learning and web forensics to combat digital opioid access,” J. Med. Internet Res., vol. 20, no. 4, pp. 1–13, Feb. 2018. https://doi.org/10.2196/10029

N. Shah, J. Li & T. Mackey, “An unsupervised machine learning approach for the detection and characterization of illicit drug-dealing comments and interactions on Instagram,” Subst. Abus., vol. 43, no. 1, pp. 273–277, Jul. 2022. https://doi.org/10.1080/08897077.2021.1941508

D-H. Han, S. Lee & D-C. Seo, “Using machine learning to predict opioid misuse among U.S. adolescents,” Prev. Med., vol. 130, pp. 1–10, Nov. 2019. https://doi.org/10.1016/j.ypmed.2019.105886

Z. Jianqiang, N. Chunming, P. Chengyun, H. Junxun, G. Sheng & C. Jin, “Rapid Recognition of Different Sources of Heroin Drugs by Using a Hand-Held Near-Infrared Spectrometer Based on a Multi-Layer Extreme Learning Machine Algorithm,” J. Braz. Chem. Soc., vol. 34, no. 3, pp. 426–433, Mar. 2023. https://doi.org/10.21577/0103-5053.20220120

H. Feng, R. Elladki, J. Jiang & G.-W. Wei, “Machine-learning Analysis of Opioid Use Disorder Informed by MOR, DOR, KOR, NOR and ZOR-Based Interactome Networks,” ArXiv, pp. 1–24, Jan. 2023. Available: http://arxiv.org/abs/2301.04815

J. Prieto, K. Scott, D. McEwen, L. Podewils, A. Al-Tayyib, J. Robinson, D. Edwards, S. Foldy, J. Shlay & A. Davidson, “The detection of opioid misuse and heroin use from paramedic response documentation: Machine learning for improved surveillance,” J. Med. Internet Res., vol. 22, no. 1, pp. 1–8, Jul. 2019. https://doi.org/10.2196/15645

J. Davis, P. Rao, B. Dilkina, J. Prindle, D. Eddie, N. Christie, G. DiGuiseppi, S. Saba, C. Ring & M. Dennis, “Identifying individual and environmental predictors of opioid and psychostimulant use among adolescents and young adults following outpatient treatment,” Drug Alcohol Dep., vol. 233, pp. 1–10, Apr. 2022. https://doi.org/10.1016/j.drugalcdep.2022.109359

D. Cipriano, Y. Melo, M. Zambrano, R. Ruiz y J. Deza, “A machine learning approach to find the determinants of Peruvian coca illegal crops,” Decis. Sci. Lett., vol. 11, no. 2, pp. 127–136, Dec. 2021. http://dx.doi.org/10.5267/j.dsl.2021.12.003

H. Feng, K. Gao, D. Chen, A. Robison, E. Ellsworth & G.-W. Wei, “Machine learning analysis of cocaine addiction informed by DAT, SERT, and NET-based interactome networks,” ArXiv, pp. 1–23, Jan. 2022. Available: http://arxiv.org/abs/2201.00114

K. Gao, D. Chen, A. Robison & G.-W. Wei, “Proteome-Informed Machine Learning Studies of Cocaine Addiction,” J. Phys. Chem. Lett., vol. 12, no. 45, pp. 11122–11134, Nov. 2021. https://doi.org/10.1021/acs.jpclett.1c03133

R. Suchting, J. Vincent, S. Lane, C. Green, J. Schmitz & M. Wardle, “Using a data science approach to predict cocaine use frequency from depressive symptoms,” Drug Alcohol Dep., vol. 194, pp. 310–317, Jan. 2019. https://doi.org/10.1016/j.drugalcdep.2018.10.029

R. Kranenburg, J. Verduin, Y. Weesepoel, M. Alewijn, M. Heerschop, G. Koomen, P. Keizers, F. Bakker, F. Wallace, A. van Esch, A. Hulsbergen & A. van Asten, “Rapid and robust on-scene detection of cocaine in street samples using a handheld near-infrared spectrometer and machine learning algorithms,” Drug Test Anal., vol. 12, no. 10, pp. 1404–1418, Jul. 2020. https://doi.org/10.1002/dta.2895

J. Choi, J. Chung & J. Choi, “Exploring impact of marijuana (Cannabis) abuse on adults using machine learning,” Int. J. Environ. Res. Public Health, vol. 18, no. 19, pp. 1–12. Sep. 2021. https://doi.org/10.3390/ijerph181910357

T. Parekh & F. Fahim, “Building risk prediction models for daily use of marijuana using machine learning techniques,” Drug Alcohol Dep., vol. 225, pp. 1–10, Aug. 2021. https://doi.org/10.1016/j.drugalcdep.2021.108789

D-H. Han & D-C. Seo, “Identifying risk profiles for marijuana vaping among U.S. young adults by recreational marijuana legalization status: A machine learning approach,” Drug Alcohol Dep., vol. 232, pp. 1–10, Mar. 2022. https://doi.org/10.1016/j.drugalcdep.2022.109330

L. Zoboroski, T. Wagner & B. Langhals, “Classical and neural network machine learning to determine the risk of marijuana use,” Int. J. Environ. Res. Public Health, vol. 18, no. 14, pp. 1–15. Jul. 2021. https://doi.org/10.3390/ijerph18147466

S. Negriff, B. Dilkina, L. Matai & E. Rice, “Using machine learning to determine the shared and unique risk factors for marijuana use among child-welfare versus community adolescents,” PLoS One, vol. 17, no. 9, pp. 1–19, Sept. 2022. https://doi.org/10.1371/journal.pone.0274998

N.-E. Quemá-Taimbud, M.-E. Mendoza-Becerra y O.-F. Bedoya-Leyva, “Initialization and Local Search Methods Applied to the Set Covering Problem: A Systematic Mapping,” Rev. Fac. Ing., vol. 32, no. 63, pp. 1–20, Feb. 2023. https://doi.org/10.19053/01211129.v32.n63.2023.15235

Published

2023-07-10

How to Cite

Campo Yule, J. E., Díaz Mage, D. alberto ., & Ordoñez, H. A. (2023). Machine Learning techniques applied to the consumption of illegal psychoactive substances: A systematic mapping. INGE CUC, 19(2), 97–. https://doi.org/10.17981/ingecuc.19.2.2023.08

Most read articles by the same author(s)