Slenderness in Wall-frame Systems: Corrective factors for the Valley of Mexico
DOI:
https://doi.org/10.17981/ingecuc.19.2.2023.07Keywords:
irregular buildings, slenderness, reliability, frame-wall system, concrete frames, openseesAbstract
Introduction— The methodologies and procedures used in the design of buildings shown in the Mexico City Building Regulations 2017 are based on reliability and performance techniques, however, the factors applied in this standard for irregular systems are based on engineering practice.
Objective— The aim of this research is to obtain corrective factors applicable to the Mexican standards for the design of concrete structures with slenderness characteristics and with frame-wall system.
Methodology— The analysis, design and comparison of two families of concrete buildings with dual system, the first family is characterized by complying with the requirements of regularity delimited in the regulations, the second family breaks with the requirement of slenderness, both families are formed by buildings of 11, 15 and 20 levels. For each building, a sample of at least 50 buildings was created using the Montecarlo method, varying their mechanical and geometric properties, live loads, dead loads and seismic actions. The samples were evaluated by means of a reliability analysis and then compared.
Results— Recommendations are given for obtaining reliability and performance based factors associated with specific ground acceleration and different degrees of slenderness.
Conclusions— The Mexico City Building Regulations only considers the slenderness irregularity factor when the height/base ratio is greater than 4 and there is also another irregularity in the building. This study shows that buildings with slenderness ratios greater than 4 should be considered as irregular and a corrective factor should be applied according to their degree of slenderness, this in turn without having infringed any other irregularity.
Downloads
References
Normas Técnicas Complementarias para el Diseño y Construcción de Cimentaciones, Gob. CDMX, Gaceta No. 220 Bis, 15 dic. 2017, pp. 10-43. Recuperado de https://www.smig.org.mx/archivos/NTC2017/normas-tecnicas-complementarias-reglamento-construcciones-cdmx-2017.pdf
Normas Técnicas Complementarias para el Diseño y Construcción de Estructuras de Concreto, Gob. CDMX, Gaceta No. 220 Bis, 15 dic. 2017, pp. 372–566. Recuperado de https://www.smig.org.mx/archivos/NTC2017/normas-tecnicas-complementarias-reglamento-construcciones-cdmx-2017.pdf
Normas Técnicas Complementarias para el Diseño por sismo, Gob. CDMX, Gaceta No. 220 Bis, 15 dic. 2017, pp. 44–83. Recuperado de https://www.isc.cdmx.gob.mx/servicios/servicio/normas-tecnicas-complementarias-y-sasid
L. Esteva & O. J. Díaz-López, “Seismic reliability functions for complex systems based on a secant-stiffness reduction index,” in Reliability and Optimization of Structural Systems: Assessment, Design, and Life-Cycle Performance, D. Frangopol, M. Kawatani & C. Kim, Eds., LDN, UK: Taylor & Francis e-Library, 2007, pp. 83–92. https://doi.org/10.1201/b16819-11
J. G. Rangel & L. Esteva. Reference Manual of Simulation of Buildings (version 1.0). VER, MX: UV, 2015.
OpenSees. (3.3.0, 2021). PEER. [Online
L. Esteva & E. Ismael, “A maximum likelihood approach to system reliability with respect to seismic collapse,” presented at 11th WG7.5 Working Conference, IFIP, BFF, CA, 2-5 Nov. 2003. https://doi.org/10.1201/9781003078876
A. Vásquez, “Funciones de daño acumulado para edificios de concreto reforzado”, Tesis de Maestría, Instut. Ing., UNAM, CDMX, MX, 2010. Disponible en https://repositorio.unam.mx/contenidos/73622
J-C. Pier & A. Cornell, “Spatial and temporal variability of live loads”, J. Struct. Div. ASCE, vol. 99, no. 5, pp. 903–922, May. 1973. https://doi.org/10.1061/JSDEAG.0003512
J. Soriano, “Análisis teórico de cargas vivas en edificios”, Tesis de Maestría, Fac. Ing., UNAM, CDMX, MX, 1996. Recuperado de 132.248.9.195/ppt1997/0234028/Index.html
American National Standard A58, Minimum Design Loads in Buildings and Other Structures, ANSI, Jun. 1980. Available from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication577.pdf
S. Mirza & J. MacGregor, “Variability of mechanical properties of reforcing bars”, J. Struct. Div. ASCE, vol. 105, no. 5, pp. 921–937, May. 1979. https://doi.org/10.1061/JSDEAG.0005146
S. Mirza & J. MacGregor, “Variations in dimensions of reinforced concrete members”, J. Struct. Div. ASCE, vol. 105, no. 4, pp. 751–766, Apr. 1979. https://doi.org/10.1061/JSDEAG.0005132
M. Rodríguez y J. Botero, “Comportamiento sísmico de estructuras considerando las propiedades mecánicas de aceros de refuerzo mexicanos”, Rev. Ing. Sismic., no. 49, pp. 39–50, Ene. 1995. https://doi.org/10.18867/RIS.49.268
C. Mendoza, “Evaluación de la resistencia del concreto en la estructura por medio del ensayo de corazones”, IMCYC, vol. III, no. 34, pp. 611–611, 1991. Disponible en http://www.imcyc.com/revistacyt/jul11/anteriores.html
R. Meli y C. Mendoza, “Reglas de verificación del concreto”, Revista de Ingeniería, vol. LXI, pp. 19–24, Dic. 1991.
A. Vásquez y R. Gallardo, “Respuesta no lineal de estructuras con muros de concreto reforzado”, INGE CUC, vol. 14, no. 2, pp. 55–61, Jun. 2018. https://doi.org/10.17981/ingecuc.14.2.2018.05
N. Stevens, S. Uzumeri, M. Collins & G. Will, “Constitutive Model for Reinforced Concrete Finite Element Analysis”, ACI Struct. J., vol. 88, no. 1, pp. 49–59, Jan. 1991. https://doi.org/10.14359/3105
Esteva, O. Díaz-López & J. García-Pérez, “Reliability functions for earthquake resistant design,” Reliab. Eng. Syst. Saf., vol. 73, no. 3, pp. 239–262 Sep. 2001. https://doi.org/10.1016/S0951-8320(01)00045-X
E. Ismael & L. Esteva, “A hybrid method for simulating strong ground motions records,” presented at First European Conference on Earthquake Engineering and Seismology, ECEES, GE, CH, 3-8 Sept. 2006. Available: https://www.preventionweb.net/quick/38670
C. Cornell, “A Probability-Based Structural Code”, ACI J. Proc., vol. 66, no. 12, pp. 974–985, Jan. 1969. https://doi.org/10.14359/7446

Published
How to Cite
Issue
Section
License
Copyright (c) 2023 INGE CUC

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.