Machine learning model for the classification of municipalities by illicit crops in Colombia from 2010 to 2020

Authors

  • Andrés Eduardo Narváez Figueroa Universidad Pedagógica y Tecnológica de Colombia
  • Gustavo Cáceres Castellanos Universidad Pedagógica y Tecnológica de Colombia
  • Juan Sebastián González Sanabria Universidad Pedagógica y Tecnológica de Colombia

DOI:

https://doi.org/10.17981/ingecuc.19.1.2023.05

Keywords:

Unsupervised Classification, Illicit crops, data mining, fight against drugs, cocaine, Colombia

Abstract

Introduction— The United Nations Office on Drugs and Crime (UNODC) classifies Colombia as one of the countries where drug trafficking and crime threaten the security, peace and development opportunities of its citizens.

Objective— This article presents the application of the unsupervised K-means classification algorithm to categorize municipalities with coca cultivation presence in Colombia. Methodology- The CRISP-DM methodology was used for data mining, and the PCA (Principal Component Analysis) algorithm was used for the correlation of variables.

Results— Multiple sources of information were used, such as: the number of hectares of coca per municipality, seizures, laboratories destroyed, manual eradication and fumigation, monitored by national institutions, in order to make crosses with socioeconomic and performance variables of the municipalities with coca crops in the period from 2010 to 2020. Based on the classification, the scenarios of each category were analyzed to find scenarios that allow elucidating the dynamics of the territories suffering from this scourge.

Conclusions— It was found that the behavior of coca-producing municipalities responds mainly to 4 groups. It was also found that the municipality of Tumaco in Nariño does not fit into any category since it exceeds the production with respect to the other municipalities.

Downloads

Download data is not yet available.

Author Biographies

Gustavo Cáceres Castellanos, Universidad Pedagógica y Tecnológica de Colombia

Systems Engineer (1989) from the Universidad Piloto de Colombia, Master in Information Sciences and Comunications (2012) from the Universidad Distrital Francisco José de Caldas, Titular Professor of the Systems and Computing Engineering program at the Universidad Pedagógica y Tecnológica de Colombia. He belongs to the Information Management Research group (GIMI). Research Areas, Business Intelligence Sciences, Data Mining, Quantum Computing

Juan Sebastián González Sanabria, Universidad Pedagógica y Tecnológica de Colombia

Juan Sebastián González Sanabria is a Systems and Computing Engineer, from the UPTC Tunja, and has two specializations: one in Databases at the UPTC and another, in completion, from the National University of La Plata in Scientific and Technological Information Management. In addition, he has a Master's Degree from the University of La Rioja in Software and Information Systems.

References

E. Garzón, A. Lopez, A. Reyes Posada, R. Rocha y S. Uribe, Drogas ilícitas en Colombia: su impacto económico, político y social. BO, CO: Ariel, 1997.

E. Ciro, “Cultivando coca en el Caquetá: vidas y legitimidades en la actividad cocalera”, Tesis doctora­l, FCPyS, UNAM, CDMX, MX, 2016. Disponible en https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000751075

A. Díaz y F. Sánchez, “Geografía de los cultivos ilícitos y conflicto armado en Colombia”, Trabajo grado, Fac Econ, UNIANDES, BO, CO, 2004. Disponible en http://hdl.handle.net/1992/7865

M. Ramírez, Entre el Estado y la guerrilla: identidad y ciudadanía en el movimiento de los campesinos cocaleros del Putumayo. BO, CO: ICANH, 2001. Disponible en https://babel.banrepcultural.org/digital/collection/p17054coll10/id/2898/

P. Sacipa, “Desplazamiento forzado y política de erradicación de cultivos ilícitos,” Scripta Nova, vol. 94, no. 39, Ago. 2001. Disponible en https://revistes.ub.edu/index.php/ScriptaNova/article/view/364

E. Davalos, “New answers to an old problem: Social investment and coca crops in Colombia,” Int. J. Drug Policy, vol. 31, pp. 121–130. May 2016. https://doi.org/10.1016/j.drugpo.2016.02.002

UNODC, “Informe Mundial sobre las Drogas 2014”, UN, NYC, NY, USA, V.14-04627 (S), 2014. Available: https://www.unodc.org/wdr2014/

UNODC, Informe Mundial sobre las Drogas 2011. NYC, NY, USA: UN, 2011. Available: https://www.unodc.org/unodc/en/data-and-analysis/WDR-2011.html

G. Buzai, C. Baxendale, N. Principi, M. Cruz, G. Cacace, N. Caloni, L. Humucata y J. Mora, Sistemas de Información Geográfica (SIG): teoría y aplicación. LUJ, AR: UNLU, 2013.

UNODC, Informe Mundial sobre las Drogas 2013. NYC, NY, USA: UN, 2013. Available: https://www.unodc.org/lpo-brazil/en/drogas/relatorio-mundial-sobre-drogas.html

D. Ortiz, “Influencia de los cultivos ilícitos como dinámica territorial de los municipios de Cáceres y Tazará (Antioquia) en los períodos 2007 – 2010, mediante herramientas de sistemas de información geográfica – SIG,” Trabajo Final, Fac Cienc Ing, UManizales, MZL, CO, 2018. Disponible en https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/4174

L. Camargo, “Lineamientos para la gestión de la deforestación, generada por los cultivos ilícitos asociados al conflicto armado, en el Municipio de Tibú, en el contexto del posconflicto”, Trabajo de Grado, FEAR, UJaveriana, BO, CO, 2022. https://doi.org/10.11144/Javeriana.10554.38071

J. Gil, Minería de texto con R. Aplicaciones y técnicas estadísticas de apoyo. MA, ES: UNED, 2021.

MARA. “Las tres ideas de Sarmiento sobre la minería”. Proyecto Mara. Disponible en https://www.infomara.com.ar/ (consultado 2010 Sep. 28).

C. Gil. “Análisis de datos scRNA-Seq con bioconductor”. Rpubs, 28 Feb. 2020. Disponible en https://rpubs.com/Cristina_Gil/scRNS-Seq_Bioconductor

J. Hair, R. Anderson, R. Tatham & W. Black, Multivariate Data Analysis, 6th ed. TTN, NJ, USA: Prentice Hall, 2006.

DANE, “Información Censo nacional de población y vivienda 2018”. Gov.co, 2018. Disponible en https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbi#:~:text=La%20metodolog%C3%ADa%20de%20NBI%20busca,fijado%2C%20son%20clasificados%20como%20pobres

Gov.co, “Índice de Desempeño Integral (IDI)”. Servicio al ciudadano-Glosario, 2022. Disponible en https://www.funcionpublica.gov.co/glosario/-/wiki/Glosario+2/%C3%8Dndice+de+Desempe%C3%B1o+Integral+%3COPEN_PARENTHESIS%3EIDI%3CCLOSE_PARENTHESIS%3E

Published

2023-01-29

How to Cite

Narváez Figueroa, A. E., Cáceres Castellanos, G., & González Sanabria, J. S. . (2023). Machine learning model for the classification of municipalities by illicit crops in Colombia from 2010 to 2020. INGE CUC, 19(1), 47–60. https://doi.org/10.17981/ingecuc.19.1.2023.05