Forecasting of yields in Jarillo peach crops at the Province of Pamplona using random variables
DOI:
https://doi.org/10.17981/ingecuc.18.1.2022.06Keywords:
Agricultural production systems, Stochastical models, Peach production, Discrete-variable simulation, Probability distributionAbstract
Introduction— As a result of a research project, this article shows the crop yield forecast for a peach variety named jarillo. For this, a model was designed to simulate the production of peach fruits, generating random variables of the number of fruits and total weight, from probability distributions deduced from crop samples.
Objective— Forecasting the yield of a peach crop, by simulating variables that follow a probability distribution associated with it, obtaining a statistical behavior similar to a real production scenario.
Methodology— A bibliographic review was made of studies on production forecasting in other plant species. Production samples were also taken from farms in various zones and a linear regression analysis at a fixed interval (stepwise) was made, taking yield as a dependent variable and the physical dimensions of the branch as an independent variable. In addition, data was collected for determine the production probability distribution and based on it a simulator software was designed and implemented, with which various simulations of production scenarios were made.
Results— Models were obtained with a lower number of variables resulting from applying the stepwise procedure in order to forecasting the number of fruits and performance. When characterizing input variables, the mathematical model was built with random inputs to predict yield, such as crop area, planting system, planting density, crop age and branch length, leaf area, fruit diameters, among others variables.
Conclusions— Is feasible the forecasting of peach crops yield under several assumptions, from samples observed in real production scenarios. It was posible to implement a forecast model based on random variables, whose variability with respect to real data is significantly small.
Downloads
References
FAOSTAT, “Crops and livestock products,” FAO. Accesed: Jun., 2021. [Online]. Available: http://www.fao.org/faostat/en/#data/QC
J. Hernández, D. Micheletti, M. Bink, E. Van de Weg, C. Cantín, N. Nazzicari, A. Caprera, M. Dettori, S. Micali, E. Banchi, J. Campoy, E. Dirlewanger, P. Lambert, T. Pascal, M. Troggio, D. Bassi, L. Rossini, I. Verde, B. Quilot-Turion, F. Laurens, P. Arús & M. Aranzana, “Integrated QTL detection for key breeding traits in multiple peach progenies”, BMC Genom, vol. 18, no. 1, pp. 1–15, Jun. 2017. https://doi.org/10.1186/s12864-017-3783-6
R, Pio, F.B.M. de Souza, L, Kalcsits, R.B. Bisi and D.D. Farias, “Advances in the production of temperate fruits in the tropics”, Acta Sci Agron, vol. 41, no. 1, pp. 1–10, Nov. 2019. https://doi.org/10.4025/actasciagron.v41i1.39549
S. Cancino, G. Cancino y E. Quevedo, “Factores determinantes de la rentabilidad económica del cultivo de durazno en la Provincia de Pamplona, Norte de Santander, Colombia”, Rev. Espacios, vol. 40, no 13, pp. 1–9, Abr. 2019. Available from http://www.revistaespacios.com/a19v40n13/a19v40n13p18.pdf
B. Jana, “Performance of Some Low Chill Peach, [Prunus persica (L) Batsch] Under Eastern Plateau Regions of India”, Int J Curr Microbiol App Sci, vol. 4, no. 12, pp. 752–757, Dec. 2015. Available from https://www.ijcmas.com/vol-4-12/B.R.Jana.pdf
T. Campos, “Species y variedades de hoja caduca en Colombia”, in Los frutales caducifolios en Colombia. Situación actual, sistemas de cultivo y plan de desarrollo, D. Miranda, G. Fisher y C. Carranza, eds. BO, CO: Soccolhort, 2013, pp. 47–66. Disponible en http://hdl.handle.net/20.500.12324/33528
Evaluaciones Agropecuarias Municipales EVA, MinAgricultura, Jul. 2021. https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Evaluaciones-Agropecuarias-Municipales-EVA/2pnw-mmge
S. Silva-Laya, H. Silva-Laya, y S. Pérez-Martínez, “Eficiencia energética y monetaria de sistemas de producción de durazno (Prunus pérsica) en El Jarillo, Venezuela”, IDESIA, vol. 35, no 4, pp. 17–26, Dic. 2017. https://doi.org/10.4067/S0718-34292017000400017
S. Silva, S. Pérez & J. Álvarez, “Socioecological diagnosis and peri-urban family agriculture typification, with emphasis in the production of peach (P. persica), in El Jarillo, Venezuela”, Rev FCA UNCuyo, vol. 51, no 1, pp. 351–368, Jun. 2019. Available: https://revistas.uncu.edu.ar/ojs/index.php/RFCA/article/view/2456
M. I. Moyano, P. Flores, S. Seta, L. Andrea y C. Severin, “Efecto de diferentes prácticas culturales sobre la producción, calidad y maduración de frutos de duraznero cv. Early Grande”, Cienc Agron, vol. 17, pp. 7–11, Ago. 2010. Available: https://test-cienciasagronomicas.unr.edu.ar/journal/index.php/agronom/article/view/8
A. García-Mogollón y M. Torres-Zamudio, “Estudio de vigilancia tecnológica sobre el desarrollo de patentes en el campo de la producción y transformación de durazno”, Rev Cienc Agricult, vol. 14, no. 1, pp. 15–29, May. 2017. https://doi.org/10.19053/01228420.v14.n1.2017.6084
P. Steduto, T.C. Hsiao, E. Fereres, D. Raes y FAO, Respuesta del rendimiento de los cultivos al agua 2012. ROM, IT: FAO, 2012. Disponible en https://www.fao.org/3/i2800s/i2800s.pdf
E. J. Link, “Investigation and modeling of the optimization potential of adapted nitrogen fertilization strategies in corn cropping system with regard to minimize nitrogen losses”, Ph. D. Dissertación, Fac Agric Sci, UNI, ST, DE, 2005. Available from https://opus.uni-hohenheim.de/volltexte/2005/122/pdf/2005-11-30_Dissertation_JLink.pdf
K. J. Boote, M. R. Rybak, J. M.S. Scholberg & J. W. Jones, “Improving the CROPGRO-Tomato Model for Predicting Growth and Yield Response to Temperature”, HortScience, vol. 47, no. 8, pp. 1038–1049, Aug. 2012. https://doi.org/10.21273/HORTSCI.47.8.1038
J. A. Ramos, E. Becerra, J. F. Cárdenas y R. Jiménez, “Aplicación del modelo Aquacrop para un cultivo de maíz (Zea mays L)”, Rev Sist Prod Agroecol, vol. 10, no. 2, pp. 19–49, Nov. 2019. https://doi.org/10.22579/22484817.730
M. E. Fernández, Diagnóstico de modelos agroclimáticos evaluacion del riesgo agroclimático por sectores. BO, CO: Fonade/IDEAM, 2013. Recuperado de http://www.ideam.gov.co/documents/21021/21138/Uso+de+Modelos+agroclim%C3%A1ticos.pdf/9f53a23d-9afa-4fda-aad3-5fe407c6cfea
IICA/UE, “Elementos conceptuales básicos sobre modelos de simulación para estudiar el clima y sus impactos en la agricultur”, in Modelos de simulación y herramientas de modelaje: elementos conceptuales y sistematización de herramientas para apoyar el análisis de impactos de la variabilidad y el cambio climático sobre las actividades agrícolas. SJO, CR: UE/IICA, 2015, pp. 9–21. Available: http://repositorio.iica.int/handle/11324/3045
C. T. De Wit, “Modelling Agricultural Production”, Acta Hortic, vol. 184, pp. 59–70, 1986. https://doi.org/10.17660/ActaHortic.1986.184.6
B. Candelaria, O. Ruiz, F. Gallardo, P. Pérez, Á. Martínez y L. Vargas, “Aplicación de modelos de simulación en el estudio y planificación de la agricultura, una revisión”, Trop Subtrop Agroecosystems, vol. 14, no. 3, pp. 999–1010, Dic. 2011. Disponible en https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1103
A. R. Graves, P. J. Burgess, J. Palma , K. Keesman, W. van der Werf , C. Dupraz , H. van Keulen, F. Herzog & M. Mayus, “Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe”, Ecol Modell, vol. 221, no 13-14, pp. 1744–1756, Jul. 2010. https://doi.org/10.1016/j.ecolmodel.2010.03.008
M.A. Ríos, R. Arrieta & A. Torres, “Angular Instability “Day Ahead” Risk Forecasting - Probabilistic Dependency on Load”, IEEE LATAM Transc, vol. 5, no. 8, pp. 585–590, Dec. 2007. https://doi.org/10.1109/T-LA.2007.4445710
E. Chacón, I. Besembel y J. Hennet, Automatización Industrial. MDA, VE: ULA, 2001.
A. Law, Simulation Modeling and Analysis, 5 Ed. NYC, NY, USA: McGraw-Hill, 2000.
F. DiCesare & A. Desroches, “Modeling, Control and Performance Analysis of automated systems using Petri Nets”, J Dyn Control Syst, vol.47, Part 3, pp. 121–172, Sep. 1991. https://doi.org/10.1016/B978-0-12-012747-4.50009-3
C. J. Barrera y J. C. Correa, “Distribución predictiva bayesiana para modelos de pruebas de vida vía MCMC”, Revcoles, vol. 31, no 2, pp. 145–155, Dic. 2008. Disponible en https://revistas.unal.edu.co/index.php/estad/article/view/29611
P. H. Gutiérrez y R. S. De la Vara, Análisis y diseño de experimentos, 3 ed. CDMX, MX: Mc Graw Hill, 2012.
IDEAM, “Metodología para la elaboración del Mapa de Ecosistemas escala 1:100.000”. Consultado el 12 de agosto de 2016. [Online]. Disponible en http://www.ideam.gov.co/web/ecosistemas/mapa-ecosistemas-continentales-costeros-marinos
T. Lisandru, A. Füstös, V. Mitre & A. Dumitras, “Sweet Cherry (Prunus avium L.) and Peach (P. persica L.) Phenological Growth Stages According to BBCH Scale”, Bull UASVM Hortic, vol. 74, no 1, pp. 65–67, May. 2017. https://doi.org/10.15835/buasvmcn-hort:12361
E. Fadón, M. Herrero & J. Rodrigo, “Flower development in sweet cherry framed in the BBCH scale”, Sci Hortic, vol. 192, pp. 141–147, Aug. 2015. https://doi.org/10.1016/j.scienta.2015.05.027
O. H. Mounzer, W. Conejero, E. Nicolás, I. Abrisqueta, Y. V. García-Orellana, L. M. Tapia, J. Vera, J. M. Abrisqueta & M. del C. Ruiz-Sánchez, “Growth Pattern and Phenological Stages of Early-maturing Peach Trees Under a Mediterranean Climate”, HortSci, vol. 43, no. 6, pp. 1813–1818, Oct. 2008. https://doi.org/10.21273/HORTSCI.43.6.1813
C. A. Schneider, W. S. Rasband & K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis”, Nat Methods, vol. 9, no. 7, pp. 671–675, Jun. 2012. https://doi.org/10.1038/nmeth.2089
H. Zou & L. Xue, “A Selective Overview of Sparse Principal Component Analysis”, Proc of the IEEE, vol. 106, no. 8, pp. 1311–1320, Aug. 2018. https://doi.org/10.1109/JPROC.2018.2846588
R. Goswami, S. Chatterjee & B. Prasad, “Farm types and their economic characterization in complex agro-ecosystems for informed extension intervention: Study from coastal West Bengal, India”, Agric Food Econ, vol. 2, pp. 1–24, Jul. 2014. https://doi.org/10.1186/s40100-014-0005-2
J. M. Rojo, Regresión lineal múltiple. MAD, ES: ES, Instituto de Economía y Geografía, 2007.
D. Peña, Análisis de datos multivariantes. MAD, ES: McGraw Hill, 2002.
G. Gálvez, A. Sigarroa, T. López y J. Fernández, “Modelación de cultivos agrícolas. Algunos Ejemplos”, Cult Trop, vol. 31, no. 3, pp. 60–65, Jul. 2010. Disponible en https://ediciones.inca.edu.cu/index.php/ediciones/article/view/110
R. H. Tirado-Malaver, J. Mendoza-Sáenz, R. Tirado-Lara y R. Tirado-Malaver, “Análisis multivariado para caracterizar y tipificar fincas productoras de papa (Solanum tuberosum L.) en Cutervo, Cajamarca, Perú”, Trop Subtrop Agroecosyst, vol. 24, no. 3, pp. 1–15, Jun. 2021. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3744/1677
G. López, R. R. Favreau, C. Smith, & T. M. DeJong, “L-PEACH: A Computer-based Model to Understand How Peach Trees Grow”, Horttechnology, vol. 20, no. 6, pp. 983–990, Dec. 2010. https://doi.org/10.21273/HORTSCI.20.6.983
I. Jacobson, G. Booch y J. Rumbaugh, El proceso unificado de desarrollo de Software. BOS, MA: Addison Wesley, 2001.
L. Septar, C. Moale, I. Caplan & L. Bocioroag, “Biometric characteristics of 'Catherine Sel 1' peach cultivar in semiarid environment”, Curr trends technol Sci, vol. 10, no. 19, pp. 381–386, Ago. 2021. https://doi.org/10.47068/ctns.2021.v10i19.050
F. Soto-Bravo y M. I. González-Lutz, “Análisis de métodos estadísticos para evaluar el desempeño de modelos de simulación en cultivos hortícolas”, Agron Mesoam, vol. 30, no. 2, pp. 517–534, Ago. 2019. https://doi.org/10.15517/am.v30i2.33839
M. Jayakumar, M. Rajavel & U. Surendran, “Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India”, Int J Biometeorol, vol. 60, no. 12, pp. 1943–1952, Dec. 2016. https://doi.org/10.1007/s00484-016-1181-4
M. Scarlato, S. Dogliotti, G. Giménez, A. Borges, Ó. Bentancur y A. Lenzi, “Análisis y jerarquización de factores determinantes de las brechas de rendimiento del cultivo de frutilla en el sur del Uruguay”, Agrocienc Urug, vol. 21, no. 1, pp. 43–57, Jun. 2017. Disponible en http://www.ainfo.inia.uy/digital/bitstream/item/9821/1/SAD-758-p.3-9.pdf
K. D. de Morais, B. Xavier, D. F. da Silva, J. A. Oliveira e C. Bruckner, “Avaliação física e química de frutos de cultivares de pessegueiro”, Eng Agric, vol. 25, no. 2, pp. 157–163, Abr. 2017. https://doi.org/10.13083/reveng.v25i2.712
J. P. Cremasco, R. G. Matias, D. F. da Silva, J. A. Oliveira e C. Bruckner, “Qualidade pós-colheita de oito variedades de pêssego”, Comun Sci, vol. 7, no. 3, pp. 334–342, Dez. 2016. https://doi.org/10.14295/cs.v7i3.1404
R. G. Matias, D. F. da Silva, J. O. e Silva, J. A. Oliveira, J. P. Cremasco e C. Bruckner, “Qualidade de nectarinas produzidas em região de clima subtropical”, Rev Ceres, vol. 62, no. 6, pp. 621–626, Dez. 2015. https://doi.org/10.1590/0034-737X201562060016
R. G. Matias, C. Bruckner, D. F. da Silva, P. C. Carneiro & J. A. de Oliveira, “Adaptability and stability of peach and nectarine cultivars in subtropical climate”, Rev Ceres, vol. 64, no. 5, pp. 516–522, Oct. 2017. https://doi.org/10.1590/0034-737X201764050009
A. Lira-Conde, E. Ocaranza-Sánchez, J. Cadena-Iñiguez, L. Tapia-López, M. M. Solís-Oba y A. Ruiz-Font, “Aplicación de un modelo matemático para predecir el rendimiento vegetal de un compuesto de interés industrial”, Agroproduct, vol.11, no. 9, pp. 59–67, Sep. 2018. https://doi.org/10.32854/agrop.v11i9.1216
J. A. S. Escalante-Estrada, , M. T. Rodríguez-González y Y. I. Escalante-Estrada, “Modelos que describen la distribución del rendimiento, sus componentes y radiación solar en ayocote en espaldera de tripie”, in Ciencias Matemáticas aplicadas a la Agricultura., F. Pérez-Soto, D. Sepúlveda-Jiménez, R. Salazar-Moreno y D. Sepúlveda-Robles, eds, CDMX, MX: ECORFAN, 2017, pp. 9–17. Recuperado de https://www.ecorfan.org/handbooks/Ciencias%20Matematicas%20aplicadas%20a%20la%20Agronomia%20T-I/HCMA_TI.pdf
A. C. Gomes, A. Robaina, M. Peiter, F. Soares e A. R. Parizi, “Modelo para estimativa da produtividade para a cultura da soja”, Ciênc Rural, vol. 44, no. 1, pp. 43–49, Jan. 2014. https://doi.org/10.1590/S0103-84782013005000145
SPSS Statistics. (v. 25), IBM. [Online]. Available: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-25
R Project for Statistical Computing. (v. 42.1), R Development Core Team. [Online]. Available: https://www.r-project.org/
Arena Input Analyzer software. (v. 16.0), Rockwell Automation. [Online]. Available: https://www.rockwellautomation.com/en-us/products/software/arena-simulation.html

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 INGE CUC

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.