Dynamic analysis and comparison of control techniques in the process of obtaining bioethanol
DOI:
https://doi.org/10.17981/ingecuc.18.2.2022.03Keywords:
Alcoholic fermentation, PID control, Fuzzy control, non-linear systems; stabilityAbstract
Introduction— Previous reactor models have been used to study the dynamic behavior of bioethanol production systems, however, few have elaborated a comparative study of control strategies that stabilize and control the variables of interest.
Objective— The objective of this study is to analyze the stability of a fermentation system to obtain bioethanol, its dynamic behavior, the characterization of equilibrium points and bifurcation points of the mathematical model proposed by Jarzebski in 1992 for a continuous fermentation, taking into account the performance of the reaction in a bioreactor and the application of industrial control techniques for its optimization.
Methodology— Review and design methods of quantitative and systematized type were used.
Results— The comparison between two control strategies to control bioethanol production, PID control and Fuzzy.
Conclusions— This work shows the importance of the stability analysis of a continuous system and how it can define the regions of operational interest, in this case for ethanol production, showing that productivity is inversely proportional to the dilution rate. Finally, it is concluded that a better dynamic behavior of the system is obtained when a Fuzzy controller is used. This work also shows the importance of the stability analysis of a continuous system and how it can define the regions of operational interest, in this case for the production of ethanol.
Downloads
References
A. Jarzębski, “Modelling of oscillatory behaviour in continuous ethanol fermentation,” Biotechnol. Lett., vol. 14, no. 2, pp. 137–142, Feb. 1992. https://doi.org/10.1007/BF01026241
J. Sadhukhan, E. Martinez-Hernandez, M. Amezcua-Allieri, J. Aburto & J. Honorato, “Economic and environmental impact evaluation of various biomass feedstock for bioethanol production and correlations to lignocellulosic composition,” Bioresour. Technol. Reports, vol. 7, no. 1, pp. 1–10, Sep. 2019. https://doi.org/10.1016/j.biteb.2019.100230
B. Šantek, G. Gwehenberger, M. I. Šantek, M. Narodoslawsky & P. Horvat, “Evaluation of energy demand and the sustainability of different bioethanol production processes from sugar beet,” Resour. Conserv. Recycl., vol. 54, no. 11, pp. 872–877, Sep. 2010. https://doi.org/10.1016/j.resconrec.2010.01.006
P. Iodice, G. Langella & A. Amoresano, “Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions,” Appl. Therm. Eng., vol. 130, pp. 1081–1089, Feb. 2018. https://doi.org/10.1016/j.applthermaleng.2017.11.090
J. Mantilla, D. Garzon & C. Galeano, “Análisis multivariable del desempeño y las emisiones en motores de combustión interna que utilizan mezclas de gasolina y etanol,” Ing. Energética, vol. 36, no. 3, pp. 232–242, Sep. 2015. Available: https://rie.cujae.edu.cu/index.php/RIE/article/view/451
República de Colombia. Superintendencia de Industria y Comercio, Resolución No. 40785 de 8 de julio de 2013, por la cual se concede un registro. Disponible en http://visordocs.sic.gov.co/documentos/Docs029/ActosEnLinea001/R-40785-2013.PDF?72
A. Yousefi-Darani, O. Paquet-Durand & B. Hitzmann, “Application of fuzzy logic control for the dough proofing process,” Food Bioprod. Process., vol. 115, pp. 36–46, May. 2019. https://doi.org/10.1016/j.fbp.2019.02.006
I. Edeh, “Bioethanol Production: An Overview,” in F. L. Inambao, Ed., Bioethanol Technologies, LDN, UK: IntechOpen, 2020. https://doi.org/10.5772/intechopen.94895
D. Bernier-Oviedo, J. Rincón-Moreno, J. Solanilla, J. Muñoz & H. Váquiro, “Comparison of two pretreatments methods to produce second-generation bioethanol resulting from sugarcane bagasse,” Ind. Crops Prod., vol. 122, pp. 414–421, Oct. 2018. https://doi.org/10.1016/j.indcrop.2018.06.012
M. Toor, S. Kumar, S. Malyan, N. Bishnoi, T. Mathmani, K. Rajedran & A. Pugazhendhi, “An overview on bioethanol production from lignocellulosic feedstocks,” Chemosphere, vol. 242, pp. 1–10, Mar. 2020. https://doi.org/10.1016/j.chemosphere.2019.125080
D. Maurya, A. Singla & S. Negi, “An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol,” 3 Biotech, vol. 5, no. 5, pp. 597–609, Feb. 2015. https://doi.org/10.1007/s13205-015-0279-4
N. Pachauri, A. Rani & V. Singh, “Bioreactor temperature control using modified fractional order IMC-PID for ethanol production,” Chem. Eng. Res. Des., vol. 122, pp. 97–112, Jun. 2017. https://doi.org/10.1016/j.cherd.2017.03.031
A. Ciesielski, & R. Grzywacz, “Dynamic bifurcations in continuous process of bioethanol production under aerobic conditions using Saccharomyces cerevisiae,” Biochem. Eng. J., vol. 161, pp. 1–10, Sep. 2020. https://doi.org/10.1016/j.bej.2020.107609
I. Pataro, M. da Costa, & B. Joseph, “Closed-loop dynamic real-time optimization (CL-DRTO) of a bioethanol distillation process using an advanced multilayer control architecture,” Comput. Chem. Eng., vol. 143, pp. 1–10, Dec. 2020. https://doi.org/10.1016/j.compchemeng.2020.107075
E. Imamoglu & F. Sukan, “Scale-up and kinetic modeling for bioethanol production,” Bioresour. Technol., vol. 144, pp. 311–320, Sep. 2013. https://doi.org/10.1016/j.biortech.2013.06.118
S. Fan, S, Chen, X. Tang, Z. Xiao, Q. Deng, P. Yao, Z. Sun, Y. Zhang & C. Chen, “Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae,” Bioresour. Technol., vol. 177, pp. 169–175, Feb. 2015. https://doi.org/10.1016/j.biortech.2014.11.076
M. Muslim, T. Sukma Yudha & B. Ibrahim, “Feedback-feedforward fuzzy logic approach for temperature control in bioethanol vacuum distiller,” Indones. J. Electr. Eng. Comput. Sci., vol. 16, no. 2, pp. 678–684, Nov. 2019. https://doi.org/10.11591/ijeecs.v16.i2.pp678-684
F. Wang & H. Lin, “Fuzzy optimization of continuous fermentations with cell recycling for ethanol production,” Ind. Eng. Chem. Res., vol. 49, no. 5, pp. 2306–2311, Jan. 2010. https://doi.org/10.1021/ie901066a
J. Gomes, J. Batra, V. Chopda, P. Kathiresan & A. Rathore, “Monitoring and control of bioethanol production from lignocellulosic biomass,” in T. Bhaskar, A. Pandey, S. V. Mohan, D.-J. Lee, S. K. Khanal, eds., Waste Biorefinery: Potential and Perspectives, ch. 25, A-M-S, NL: Elsevier, 2018, pp. 727–749. https://doi.org/10.1016/B978-0-444-63992-9.00025-2
E. Petre, D. Selişteanu, & M. Roman, “Advanced nonlinear control strategies for a fermentation bioreactor used for ethanol production,” Bioresour. Technol., vol. 328, pp. 1–10, May. 2021. https://doi.org/10.1016/j.biortech.2021.124836
A. Daugulis, P. McLellan & J. Li, “Experimental investigation and modeling of oscillatory behavior in the continuous culture ofZymomonas mobilis,” Biotechnol. Bioeng., vol. 56, no. 1, pp. 99–105, Oct. 1997. https://doi.org/10.1002/(SICI)1097-0290(19971005)56:1<99::AID-BIT11>3.0.CO;2-5
M. Henson, “Dynamic modeling of microbial cell populations,” COBIOT, vol. 14, no. 5, pp. 460–467, Oct. 2003. https://doi.org/10.1016/S0958-1669(03)00104-6
F. Lei, M. Rotboll & S. Jorgensen, “A biochemically structured model for Saccharomyces cerevisiae,” J. Biotechnol., vol. 88, no. 3, pp. 205–221, Jul. 2001. https://doi.org/10.1016/S0168-1656(01)00269-3
C. Strässle, B. Sonnleitner & A. Fiechter, “A predictive model for the spontaneous synchronization of Saccharomyces cerevisiae grown in continuous culture. II. Experimental verification,” J. Biotechnol., vol. 9, no. 3, pp. 191–208, Feb. 1989. https://doi.org/10.1016/0168-1656(89)90108-9
I. Jöbses, G. Egberts, A. van Baalen & J. Roels, “Mathematical modelling of growth and substrate conversion of Zymomonas mobilis at 30 and 35°C,” Biotechnol. Bioeng., vol. 27, no. 7, pp. 984–995, Jul. 1985. https://doi.org/10.1002/bit.260270709
P. Garhyan & S. Elnashaie, “Bifurcation analysis of two continuous membrane fermentor configurations for producing ethanol,” Chem. Eng. Sci., vol. 59, no. 15, pp. 3235–3268, Aug. 2004. https://doi.org/10.1016/j.ces.2004.05.003
I. Jöbses, G. Egberts, K. Luyben & J. Roels, “Fermentation kinetics ofZymomonas mobilis at high ethanol concentrations: Oscillations in continuous cultures,” Biotechnol. Bioeng., vol. 28, no. 6, pp. 868–877, Jun. 1986. https://doi.org/10.1002/bit.260280614
A. Namjoshi & D. Ramkrishna, “Multiplicity and stability of steady states in continuous bioreactors: Dissection of cybernetic models,” Chem. Eng. Sci., vol. 56, no. 19, pp. 5593–5607, Oct. 2001. https://doi.org/10.1016/S0009-2509(01)00166-X
Y. Zhang, A. Zamamiri, M. Henson & M. Hjortsø, “Cell population models for bifurcation analysis and nonlinear control of continuous yeast bioreactors,” J. Process Control, vol. 12, no. 6, pp. 721–734, Sep. 2002. https://doi.org/10.1016/S0959-1524(01)00010-5
G. Abdelghani, “Continuous Ethanol Fermentation at Very High Gravity in the Presence of Saccharomyces cerevisiae: A Bifurcation Analysis”, J. Sustain. Bioenergy Syst., vol. 8, pp. 116–126, Dec. 2018. https://doi.org/10.4236/jsbs.2018.84009

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 INGE CUC

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.