Optimization-based analysis of negative externalities of urban public transport service: A case study
DOI:
https://doi.org/10.17981/ingecuc.17.2.2021.15Keywords:
public transportation, externalities, sustainable mobility, optimization, mathematical modelsAbstract
Introduction: Using the principles of sustainable mobility for urban public transport, this research models and solves a problem of optimization of negative externalities of the public transport service such as congestion, climate change, air pollution, noise and traffic accidents, raising the possibility of minimizing the variable social costs.
Objective: The study was carried out in Ecuador, in the transportation system of the city of Ambato, which has 5 operators, 22 lines and 397 bus units.
Method: The Ngamchai and Lovell model, programmed in LINGO software, is used as the basis for the modeling and solution of the program.
Results: Through the results obtained, the total cost for the operation of the transportation system was reduced from $ 8910.72 to $ 6608.39 per unit per hour, which implies a reduction of 25.9% with the individual considerations of the headway (separation in time between vehicles) for each of the lines that comprise it, and the fleet currently used is also reduced by 21%.
Conclusions: The research leaves open the possibility of proposing future studies that seek strategies to mitigate each of the externalities from a technical-economic perspective of environmental sustainability.
Downloads
References
I. Chatziioannou, L. Alvarez-Icaza & E. Bakogiannis, “A structural analysis method for the promotion of Mexico City´s integral plan of mobility,” Cogent Eng, vol. 7, no. 1, pp. 1–21, 2020. https://doi.org/10.1080/23311916.2020.1759395
C. Regnier & S. Legras, “Urban Structure and Environmental Externalities,” Environ Resour Econ, vol. 70, no. 1, pp. 31–52, 2018. https://doi.org/10.1007/s10640-016-0109-0
S. Perveen, T. Yigitcanlar, M. Kamruzzaman & J. Hayes, “Evaluating transport externalities of urban growth: a critical review of scenario-based planning methods,” Int J Environ Sci.Technol, vol. 14, no. 3, pp. 663–678, 2016. https://doi.org/10.1007/s13762-016-1144-7
D. Aldas, J. Reyes, L. Morales, P. Pazmiño, J. Núñez & B. Toaza.Impacts analysis towards a sustainable urban public transport system. InICORES, pp. 38–46, 2018. https://doi.org/10.5220/0006537700380046
I. Chatziioannou, L. Alvarez-Icaza, E. Bakogiannis, C. Kyriakidis & L. Chias-Becerril, “A CLIOS analysis for the promotion of sustainable plans of mobility: The case of Mexico City,” Appl Sci, vol. 10, no. 13, pp. 1–30, 2020. https://doi.org/10.3390/app10134556
I. Henke, A. Cartenì, C. Molitierno & A. Errico, “Decision-Making in the transport sector: A sustainable evaluation method for road infrastructure,” Sustain, vol. 12, no. 3, pp. 1–19, 2020. https://doi.org/10.3390/su12030764
I. W. H. Parry, M. Walls & W. Harrington, “Automobile Externalities and Policies,” SSRN Electron J, pp. 10–35, 2007. https://doi.org/10.2139/ssrn.927794
I. Chatziioannou, L. Alvarez-Icaza, E. Bakogiannis, C. Kyriakidis & L. Chias-Becerril, “A structural analysis for the categorization of the negative externalities of transport and the hierarchical organization of sustainable mobility’s strategies,” Sustain, vol. 12, no. 15, pp. 1–27, 2020. https://doi.org/10.3390/su12156011
C. Dascalu, C. Caraiani, C. Iuliana Lungu, F. Colceag & G. Raluca Guse, “The externalities in social environmental accounting,” Int J Account Inf Manag, vol. 18, no. 1, pp. 19–30, 2010. https://doi.org/10.1108/18347641011023252
A. Tob-Ogu, N. Kumar, J. Cullen & E. E. F. Ballantyne, “Sustainability Intervention Mechanisms for Managing Road Freight Transport Externalities: A Systematic Literature Review,” Sustain, vol. 10, no. 6, pp. 1–18, 2018. https://doi.org/10.3390/su10061923
A. Tirachini, “Ride-hailing, travel behaviour and sustainable mobility: an international review,” Transportation (Amst), vol. 47, no. 4, pp. 2011–2047, 2020. https://doi.org/10.1007/s11116-019-10070-2
J. P. Bocarejo & L. F. Urrego, “The impacts of formalization and integration of public transport in social equity: The case of Bogota,” Res Transp Bus Manag, pp. 1–11, 2020. https://doi.org/10.1016/j.rtbm.2020.100560
A. Tetteh & S. Dsane-Nsor, “Minimising negative externalities cost using 0-1 mixed integer linear programming model in e-commerce environment,” J Transp Supply Chain Manag, vol. 11, pp. 1–9, 2017. https://doi.org/10.4102/jtscm.v11i0.272
A. Ceder, B. Golany & O. Tal, “Creating bus timetables with maximal synchronization,” Transp Res Part A Policy Pract, vol. 35, no. 10, pp. 913–928, 2001. https://doi.org/10.1016/S0965-8564(00)00032-X
A. Virk, “Urbanisation: A Growing Story in Context of Efficient Urban Mob,” RRIJM, 2019. Available: https://rrjournals.com/index.php/rrijm
S. McLeod, J. Scheurer & C. Curtis, “Urban Public Transport: Planning Principles and Emerging Practice,” J Plan Lit, vol. 32, no. 3, pp. 223–239, 2017. https://doi.org/10.1177/0885412217693570
N. Ayu & Nahry, “Externalities aspects of freight distribution through the urban consolidation center,” IOP Conf Ser Earth Environ Sci, vol. 622, pp. 12024, 2021. https://doi.org/10.1088/1755-1315/622/1/012024
R. Peñabaena-Niebles, V. Cantillo & J. Luis Moura, “The positive impacts of designing transition between traffic signal plans considering social cost,” Transp Policy, vol. 87, pp. 67–76, 2020. https://doi.org/10.1016/j.tranpol.2019.05.020
M. H. Baaj & H. S. Mahmassani, “An AI-based approach for transit route system planning and design,” J Adv Transp, vol. 25, no. 2, pp. 187–209, 1991. https://doi.org/10.1002/atr.5670250205
S. Ngamchai & D. J. Lovell, “Optimal Time Transfer in Bus Transit Route Network Design Using a Genetic Algorithm,” J Transp Eng, vol. 129, no. 5, pp. 510–521, 2003. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(510)
A. Eranki, “A Model to Create Bus Timetables to Attain Maximum Synchronization Considering Waiting Times at Transfer Stops,” Thesis MSIE, USF, TPA, FL, USA, 2004. Available: https://digitalcommons.usf.edu/etd/1025/
A. Mauttone, M. Urqhhart & H. Cancela, “Optimización de Recorridos y Frecuencias en Sistemas de Transporte Público Urbano Colectivo,” Tesis de Maestría, UDELAR, MV, UY, 2005. Disponible en https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/2937
M. Meyer, Estimating travel characteristics and volumes. In: ITE, Transportation Planning Handbook, NJ, USA, Meyer, pp. 35–52, 2016.
G. Desaulniers & M. D. Hickman, Public Transit. In: C. Barnhart & G. Laporte, eds., Handbooks in Operations Research and Management Science, vol. 14, Chapt 2, NL, North Holand, pp. 69–127, 2007. https://doi.org/10.1016/S0927-0507(06)14002-5
M. Sinner, U. Weidmann & A. Nash, “Application of a Cost-Allocation Model to Swiss Bus and Train Lines,” Transp Res Rec, vol. 2672, no. 8, pp. 431–442, 2018. https://doi.org/10.1177/0361198118772702
L. Deng, W. Gao, Y. Fu & W. Zhou, “Optimal design of the feeder-bus network based on the transfer system,” Discret Dyn Nat Soc, pp. 1–11, 2013. https://doi.org/10.1155/2013/483682
M. E. Ruiz, C. M. Mayorga, D. S. Aldas & J. P. Reyes, “El costo y la percepción en la sociedad por congestión vehicular causada por el transporte público urbano en la ciudad de Ambato, Ecuador,” Espacios, vol. 40, no. 43, pp. 42, 2019. Disponible en https://www.revistaespacios.com/a19v40n43/19404322.html
J. H. E. Taplin & Y. Sun, “Optimizing bus stop locations for walking access: Stops-first design of a feeder route to enhance a residential plan,” Environ Plan. B Urban Anal City Sci, vol. 47, no. 7, pp. 1237–1259, 2020. https://doi.org/10.1177/2399808318824108
P. Shrivastava & M. O’Mahony, “A model for development of optimized feeder routes and coordinated schedules-A genetic algorithms approach,” Transp Policy, vol. 13, no. 5, pp. 413–425, 2006. https://doi.org/10.1016/j.tranpol.2006.03.002
L. Deng, Y. He, N. Zeng & J. Zeng, “Optimal Design of Feeder-Bus Network with Split Delivery,” ASCE, vol. 146, no. 3, 2020. https://doi.org/10.1061/jtepbs.0000305
República del Ecuador. Asamblea Consituyente, Ley Orgánica de Transporte Terrestre , Tránsito y Seguridad Vial. Registro Oficial, Suplemento 398, 7 ago. 2008. Recuperado de https://portovial.gob.ec/sitio/descargas/leyes/ley-organica-transporte-terrestre-transito-y-seguridad-vial.pdf
J. Llamuca, “Estudio tarifario del transporte urbano en buses de la ciudad de Riobamba según el nivel de servicio que prestan las operadoras a los usuarios,” Tesis - Maestría, PUCE, DMQ, EC, 2017. Disponible en http://repositorio.puce.edu.ec/handle/22000/13128

Published
How to Cite
Issue
Section
License
Copyright (c) 2021 INGE CUC

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.