Chromium and Zinc removal from synthetic industrial wastewater in pilot-scale constructed wetlands planted with Cyperus odoratus L.

Authors

DOI:

https://doi.org/10.17981/ingecuc.17.2.2021.08

Keywords:

phytoremediation, Bio-concentration, translocation, Cyperus odoratus, Subsurface flow constructed wetlands, heavy metals

Abstract

Introduction: Constructed wetlands (CWs) are a recognized technology to treat industrial wastewater.

Objective: A pilot system of two horizontal subsurface flow CWs was used to remove Cr and Zn from industrial synthetic wastewater.

Method: The study was carried out at Universidad del Atlántico in Barranquilla, Colombia. Two containers of 0.375 m2 were filled with a gravel bed (~10 mm and 40% of porosity), and a 0.3 m water column. One container was planted with Cyperus odoratus L. and another without plants was used as a control.

Results:  The removal efficiency of Cr and Zn was 93% and 96% in the CW planted, respectively, and 67% and 98% removal were obtained in the unplanted system with statistical differences (P<0,05). The observed difference in biomass production (0.1 and 0.6 kg/m2) could be related to seasonal weather that could have favored the growth of the plant. C. odoratus reached a Translocation Factor greater than 1.5 for Cr and Zn, which is greater than that, reported by others for Cyperus species. However, a Bioconcentration Factor > 13.6 for Zn and < 7.7 for Cr indicated that C. odoratus is an accumulator species for Cr and Zn. Sorption metal processes in gravel can be occurring due to the high removal efficiency of Zn in unplanted systems

Conclusions:  These results show that C. odoratus could be recommended for use in constructed wetlands technology due to fast-growing and absorption and translocation heavy metals capacity.

Downloads

Download data is not yet available.

References

República de Colombia, Contraloría General, Informe sobre la calidad y eficiencia del Control Fiscal Interno Vigencia 2017, BO, CO: Contraloría General de la República, 2017. Disponible en https://www.contraloria.gov.co/documents/20181/1560084/Informe+Control+Fiscal+Interno+2018-2019.pdf/192c04e0-bb6e-472d-82c7-3cb4a8f146db?version=1.0

IDEAM,. Estudio Nacional del Agua 2018, Bog. D.C., Col.: IDEAM/EMbajada de Suiza en Colombia, Mar. 2019. Available: https://cta.org.co/descargables-biblionet/agua-y-medio-ambiente/Estudio-Nacional-del-Agua-2018.pdf?

República de Colombia, MinAmbiente, “Por el cual se establecen los parámetros y valores límites permisibles en los vertimientos puntuales a cuerpos de agua superficiales y a los sistemas de alcantarillado público y se dictan otras disposicones,” Resolución 0631, DO: No. 49.486, 18 Abr. 2015. Recuperado de http://www.emserchia.gov.co/PDF/Resolucion631.pdf

Del Rio y Y. Ramos, “Acondicionamiento del agua residual industrial de los procesos de galvanización y decapado previo al tratamiento en humedales construidos,” Conferencia presentada en el Panamericana en sistemas de Humedales para el manejo, tratamiento y mejora de la calidad del agua, Env Sci Fac, UTP, Pereira, CO, 2012. Disponible en https://www.sanidadambiental.com/2011/12/19/conferencia-panamericana-en-sistemas-de-humedales-para-el-manejo-tratamiento-y-mejoramiento-de-la-calidad-del-agua/

N. B. Morales y G. E. Acosta, “Sistema de electrocoagulación como tratamiento de aguas residuales galvánicas,” Cienc Ing Neogranad, vol. 20, no. 1, pp. 33–34, 2010. https://doi.org/10.18359/rcin.282

A. Restrepo F & L. M. Tapia Q, “Evaluación de la remoción de conductividad y turbiedad de agua residual de una industria metalmecánica utilizando prototipos por lotes de humedales construidos de flujo libre,” Investigación, UCM, Colombia, 2019.

R. H. Kadlec & S. D. Wallace,Treatment Wetlands. 2nd Ed, BR., FL., USA.: CRC Press Taylor & Francis Group, 2009.

ONU, “Informe mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos, 2018: Soluciones basadas en la naturaleza para la gestión del aguaWWDR 2018, PA, FR: UNESCO, 2018. Disponible en https://unesdoc.unesco.org/ark:/48223/pf0000261494/PDF/261494spa.pdf.multi

X. Zhang, T. Wang, Z. Xu, L. Zhang, Y. Dai, X. Tang, R. Tao, R. Li, Y. Yang & Y. Tai, “Effect of heavy metals in mixed domestic-industrial wastewater on performance of recirculating standing hybrid constructed wetlands ( RSHCWs ) and their removal,” Chem Eng J, vol. 379, pp. 122363–122363, Jan. 2020. https://doi.org/10.1016/j.cej.2019.122363

J. Truu, M. Espenberg, H. Nõlvak & J. Juhanson, “Phytoremediation and Plant-Assisted Bioremediation Treatment Wetlands: A Review,” Open Biotechnol J, vol. 9, pp. 85–92, Jun. 2015. Available: https://openbiotechnologyjournal.com/VOLUME/9/

H. Singh, A. Verma, M. Kumar, R. Sharma, R. Gupta, M. Kaur, M. Negi & S. K. Sharma, “Phytoremediation : A Green Technology to Clean Up the Sites with Low and Moderate Level of Heavy Metals,” Austin Biochem, vol. 2, no. 2, pp. 1–8, 2017. Available: https://austinpublishinggroup.com/biochemistry/fulltext/biochemistry-v2-id1012.php

D. Zhang, C. Wang, L. Zhang, D, Xu, B. Liu, Q. Zhou & Z. Wu, “Structural and metabolic responses of microbial community to sewage-borne chlorpyrifos in constructed wetlands,” J Environ Sci, vol. 44, pp. 4–12, Jun. 2016. https://doi.org/10.1016/j.jes.2015.07.020

C. J. Mulkeen, C. D. Williams, M. J. Gormally & M. G. Healy, “Seasonal patterns of metals and nutrients in Phragmites australis ( Cav .) Trin . ex Steudel in a constructed wetland in the west of Ireland,” Ecol Eng, vol. 107, pp. 192–197, Oct. 2017. https://doi.org/10.1016/j.ecoleng.2017.07.007

J. A. Romero-Hernández, A. Amaya-Chávez, P. Balderas-Hernández, G. Roa-Morales, N. González-Rivas & M. Á. Balderas-Plata, “Tolerance and hyperaccumulation of a mixture of heavy metals ( Cu, Pb, Hg, and Zn ) by four aquatic macrophytes,” Int J Phytoremediation, vol. 19, no. 3, pp. 239–245, May. 2017. https://doi.org/10.1080/15226514.2016.1207610

S. Rezania, S. Mat, M. Fadhil, F. Aini & H. Kamyab, “Comprehensive review on phytotechnology : Heavy metals removal by diverse aquatic plants species from wastewater,” J Haz Mat, vol. 318, pp. 587–599, Nov. 2016. https://doi.org/10.1016/j.jhazmat.2016.07.053

S. Yadav & R. Chandra, “Heavy Metals Accumulation and Ecophysiological Effect on Typha angustifolia L . And Cyperus esculentus L . Growing in Distillery and Tannery Effluent polluted natural wetlands site, Unnao, Inidia,” Environ Earth Sci, vol. 62, pp. 1235–1243, 2011. https://doi.org/10.1007/s12665-010-0611-6

Q. Mahmood, N. Mirza & S. Shaheen, “Phytoremediation Using Algae and Macrophytes: I, “L. Newman, A. A. Ansari, S. Singh Gill Ritu Gill & G. R. Lanza"Phytoremediation. Manegement of Environmental Contaminantes, vol. 2, Eds. Springer, pp. 265–289, 2015. https://doi.org/10.1007/978-3-319-10969-5_22

T. M. Galal, F. A. Gharib, S. M. Ghazi & K. H. Mansour, “Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands,” Environ Sci Pollut Res, vol. 24, no. 27, pp. 21636–21648, 2017. https://doi.org/10.1007/s11356-017-9793-8

Herniwanti, J. B. Priatmadi, B. Yanuwiadi & Soemarno, “Water Plants Characteristic for Phytoremediation of Acid Mine Drainage Passive Treatment,” Int J Basic Appl Sci IJBAS-IJENS, vol.13, no. 06, pp. 14–20, Dec. 2013. Available: http://www.ijens.org/Vol_13_I_06/136706-2525-IJBAS-IJENS.pdf

J. O. Rangel,. Colombia Diversidad Biotica IX. Ciengas de Cordoba: Biodiversidad, ecologia y manejo ambiental, BO, CO: UNAL, 2010.

H. A. Casierra-Martínez, J. C. Charris-Olmos, A. Caselles-Osorio & A. E. Parody-Muñoz, “Organic Matter and Nutrients Removal in Tropical Constructed Wetlands Using Cyperus ligularis (Cyperaceae) and Echinocloa colona (Poaceae),” Water Air & Soil Pollut, vol. 228, no. 9, pp. 1–10, 2017. https://doi.org/10.1007/s11270-017-3531-1

L. I. Ramos,. Vegetación Asociada a Paisajes Productivos de la Orinoquia Colombiana, Vvc., Col.: UNILLANOS, 2019.

A. Ortiz, S. Torres, Y. Quintana & A. López, “Primer reporte de resistencia de Cyperus odoratus L. al herbicida pirazosulfuron-etilo,” Bioagro, vol. 27, no. 1, pp. 45–50, 2015. Available: http://www.ucla.edu.ve/bioagro/

J. A. Romero-Hernández, A. Amaya-Chávez, P. Balderas-Hernández, G. Roa-Morales, N. González-Rivas & Mi. A. Balderas-Plata, “Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes four aquatic macrophytes,” Int J Phytoremediation, vol. 19, no. 3, pp. 239–245, 2017. https://doi.org/10.1080/15226514.2016.1207610

A. Caselles-Osorio & J. García, “Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands,” Sci Tot Env, vol. 378, no. 3, pp. 253–262, Jun. 2007. https://doi.org/10.1016/j.scitotenv.2007.02.031

S. Soda, T. Hamada, Y. Yamaoka, M. Ike, H. Nakazato, Y. Saeki, T. Kasamatsu & Y. Sakurai, “Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal-processing plant : Bioconcentration and translocation factors of various metals in Acorus gramineus and Cyperus alternifolius,” Eco Eng, vol. 39, pp. 63–70, Feb. 2012. https://doi.org/10.1016/j.ecoleng.2011.11.014

E. W. Rice, R. B. Baird & A. D. Eaton, Standard Methods for examination of water and wastewater. 22 Ed, WA, USA.: American Public Health Association/American Water Wors Association & Water Enviroment Federation, 2012.

K. R. Reddy & R. D. DeLaune, Biochemistry of wetlands. Science and applications, BR, USA: CRC Press/Taylor & Francis Group, 2008. https://doi.org/10.1201/9780203491454

K. R. Reddy & R. D. Delaune, Biogeochemistry of wetlands: Science and Applications, BR, USA: CRC Press/Taylor & Francis Group, 2008. https://doi.org/10.1201/9780203491454

M. Gill, “Heavy metal stress in plants:a review,” IJAR, vol. 2, no. 6, pp. 1043–1055, 2014. Available: https://www.journalijar.com/uploads/969_IJAR-3569.pdf

T. V. Ramachandra, P. B. Sudarshan, M. K. Mahesh & S. Vinay, “Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland , Bangalore,” J Env Man, vol. 206, pp. 1204–1210, Jan. 2018. https://doi.org/10.1016/j.jenvman.2017.10.014

V. Sinha, K. Pakshirajan & R. Chaturvedi, “Chromium tolerance , bioaccumulation and localization in plants : An overview,” J Env Man, vol. 206, pp. 715–730, Jan. 2018. https://doi.org/10.1016/j.jenvman.2017.10.033

J. Gao, J. Zhao, J. Zhanga, Q. Li, J. Gao, M. Cai & J. Zhang, “Preparation of a new low-cost substrate prepared from drinking water treatment sludge (DWTS)/bentonite/zeolite/fly ash for rapid phosphorus removal in constructed wetlands,” J Cle Pro, vol. 261, pp. 121110–121110, Jul. 2020. https://doi.org/10.1016/j.jclepro.2020.121110

A. Basile, S. Sorbo, B. Conte, R. Castaldo, F. Trinchella, C. Capasso & V. Carginale, “Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes,” Int J Phytoremediat, vol. 14, no. 4, pp. 374–387, 2012. https://doi.org/10.1080/15226514.2011.620653

A. Kumar Y, R. Abbassi, N. Kumar, S. Satya, T. . Sreekrishnan & B. Mishra, “The removal of heavy metals in wetland microcosms: Effects of bed depth, plant species, and metal mobility,” CEJ, vol. 211–212, pp. 501–507, 15 Nov. 2012. https://doi.org/10.1016/j.cej.2012.09.039

H. R. Hadad, M. A. Maine & C. A. Bonetto, “Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment,” Chemosphere, vol. 63, no. 10, pp. 1744–1753, Jun. 2006. https://doi.org/10.1016/j.chemosphere.2005.09.014

R. Aryal, R. Nirola, S. Beecham & B. Sarkar, “International Biodeterioration & Biodegradation Influence of heavy metals in root chemistry of Cyperus vaginatus R . Br : A study through optical spectroscopy,” Int Biodeterior Biodegradation, vol. 113, pp. 201–207, 2016. Available: https://www.cabdirect.org/cabdirect/abstract/20163284520

J. Teuchies, S. Jacobs, L. Oosterlee, L. Bervoets & P. Meire, “Role of plants in metal cycling in a tidal wetland : Implications for phytoremidiation,” Sci Tot Env, vol. 446-446, pp. 146–154, Feb. 2013. https://doi.org/10.1016/j.scitotenv.2012.11.088

M. Varma, A. K. Gupta, P. S. Ghosal & A. Majumder, “A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature,” Sci Tot Env, vol. 755, part. 2, pp. 142540–142540, Feb. 2021. https://doi.org/10.1016/j.scitotenv.2020.142540

W. M. Mayes, L. C. Batty, P. L. Younger, A. P. Jarvis, M. Kõiv, C. Vohla & U. Mander, “Wetland treatment at extremes of pH : A review,” Sci Tot Env, vol. 407, no. 13, pp. 3944–3957, Jun. 2008. https://doi.org/10.1016/j.scitotenv.2008.06.045

A. Reyhanitabar, M. M. Ardalan, N. Karimian, G. R. Savaghebi & R. J. Gilkes, “Kinetics of Zinc Sorption by Some Calcareous Soils of Iran,” J Agr Sci Tech, vol. 13, pp. 263–272, 2011. Available: https://iranjournals.nlai.ir/bitstream/handle/123456789/589813/537E8A11A780A18363B4073D72E9F9F9.pdf?sequence=-1&isAllowed=y

M. Walaszek, M. Del Nero, P. Bois, L. Ribstein & A. Wanko, “Sorption behavior of copper, lead and zinc by a constructed wetland treating urban stormwater,” Ap Geochem, vol. 97, pp. 167–180, Oct. 2018. https://doi.org/10.1016/j.apgeochem.2018.08.019

X. Xu & G. L. Mills, “Do constructed wetlands remove metals or increase metal bioavailability?,” J Env Man, vol. 218, pp. 245–255, Jul. 2018. https://doi.org/10.1016/j.jenvman.2018.04.014

V. A. Papaevangelou, G. D. Gikas & V. A. Tsihrintzis, “Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: Overall performance, and fate and distribution of this element within the wetland environment,” Chemosphere, vol. 168, pp. 716–730, Feb. 2016. https://doi.org/10.1016/j.chemosphere.2016.11.002

A. M. Pat-Espadas, R. L. Portales, L. E. Amabilis-Sosa, G. Gómez & G. Vidal, “Review of Constructed Wetlands for Acid Mine Drainage Treatment,” Water, vol. 10, no. 11, pp. 1685–1685, 2018. https://doi.org/10.3390/w10111685

H. Ali, E. Khan & M. Anwar, “Chemosphere Phytoremediation of heavy metals — Concepts and applications,” Chemosphere, vol. 91, no. 7, pp. 869–881, May. 2013. https://doi.org/10.1016/j.chemosphere.2013.01.075

J. Vymazal & T. Březinová, “Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review,” CEJ, vol. 290, pp. 232–242, Apr. 2016. https://doi.org/10.1016/j.cej.2015.12.108

A. Dan, O. Masao, F. Yuta, S. Satoshi, I. Tomonori, M. Takashi & I. Michihiko, “Removal of heavy metals from synthetic landfill leachate in lab-scale vertical fl ow constructed wetlands,” Sci Tot Env, vol. 584–585, pp. 742–750, Apr. 2017. https://doi.org/10.1016/j.scitotenv.2017.01.112

C. A. Madera-Parra, E. J. Peña-Salamanca & J. A. Solarte-Soto, “Efecto de la concentración de metales pesado en la respuesta fisiológica y capacidad de acumulación de metales de tres especies vegetales tropicales empleadas en la fitorremediación de lixiviados provenientes de rellenos sanitarios,” Ing Compet, vol. 16, no. 2, pp. 179–188, 2014. https://doi.org/10.25100/iyc.v16i2.3693

G. Yu, G. Wang, J. Li, T. Chi, S. Wang, H. Peng, H. Chen, C. Du, C. Jiang, Y. Liu, L. Zhou & H. Wu, “Enhanced Cd 2 + and Zn 2 + removal from heavy metal wastewater in constructed wetlands with resistant microorganisms,” Bior Tech, vol. 316, no. May, pp. 123898–123898, Nov. 2020. https://doi.org/10.1016/j.biortech.2020.123898

M. Llugany, R. Tolrà, C. Poschnrieder & J. Barceló, “Hiperacumulación de metales : ¿una ventaja para la planta y para el hombre?,” Ecosistemas, vol. 16, no. 2, pp. 4–9, 2007. Available: https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/124

M. Soleimani-Ahmadi, H. Vatandoost, A. A. Hanafi-Bojd, M. Zare, R. Safari, A. Mojahedi & F. Poorahmad-Garbandi, “Environmental characteristics of anopheline mosquito larval habitats in a malaria endemic area in Iran,” Asian Pac J Trop Med, vol. 6, no. 7, pp. 510–515, Jul. 2013. https://doi.org/10.1016/S1995-7645(13)60087-5

R. Chandra, “Advances in Biodegradation and Bioremediation of Industrial Waste,” in R. Chandra, G. Saxena & V. KumarPhytoremediation of Environmental Pollutants : An Eco- Sustainable Green Technology to Environmental Management, BR. FL. USA.: CRC Press Taylor & Francis Group, pp. 1–30, Mar. 2015. Available: https://www.researchgate.net/publication/274249084_Phytoremediation_of_Environmental_Pollutants_An_Eco-Sustainable_Green_Technology_to_Environmental_Management

D. I. Caviedes-Rubio, D. R. Delgado & A. O. Amaya, “Remoción de metales pesados comúnmente generados por la actividad industrial , empleando macrófitas neotropicales,” P+L, vol. 11, no. 2, pp. 126–149, Jul.-Dic. 2016. Disponible en http://repository.lasallista.edu.co:8080/ojs/index.php/pl/article/view/1245

Z. B. Salem, X. Laffray, A. Al-Ashoor, H. Ayadi & L. Aleya, “Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site,” J Env Sci, vol. 54, pp. 56–68, Apr. 2017. https://doi.org/10.1016/j.jes.2015.10.039

M. Walaszek, M. Del Nero, P. Bois, L. Ribstein, O. Courson, A. Wanko & J. Laurent, “Sorption behavior of copper, lead and zinc by a constructed wetland treating urban stormwater,” Ap Geochem, vol. 97, pp. 167–180, Oct. 2018. https://doi.org/10.1016/j.apgeochem.2018.08.019

S. Tahervand & M. Jalali, “Sorption and desorption of potentially toxic metals (Cd, Cu, Ni and Zn) by soil amended with bentonite, calcite and zeolite as a function of pH,” GEXPLO, vol. 181, pp. 148–159, Oct. 2017. https://doi.org/10.1016/j.gexplo.2017.07.005

R. Chandra, “Advances in Biodegradation and Bioremediation of Industrial Waste,” in R. Chandra, G. Saxena & V. KumarPhytoremediation of Environmental Pollutants : An Eco- Sustainable Green Technology to Environmental Management, BR. FL. USA.: CRC Press Taylor & Francis Group, pp. 1–30, Mar. 2015. Available: https://www.researchgate.net/publication/274249084_Phytoremediation_of_Environmental_Pollutants_An_Eco-Sustainable_Green_Technology_to_Environmental_Management

D. I. Caviedes-Rubio, D. R. Delgado & A. O. Amaya, “Remoción de metales pesados comúnmente generados por la actividad industrial , empleando macrófitas neotropicales,” P+L, vol. 11, no. 2, pp. 126–149, Jul.-Dic. 2016. Disponible en http://repository.lasallista.edu.co:8080/ojs/index.php/pl/article/view/1245

Z. B. Salem, X. Laffray, A. Al-Ashoor, H. Ayadi & L. Aleya, “Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site,” J Env Sci, vol. 54, pp. 56–68, Apr. 2017. https://doi.org/10.1016/j.jes.2015.10.039

M. Walaszek, M. Del Nero, P. Bois, L. Ribstein, O. Courson, A. Wanko & J. Laurent, “Sorption behavior of copper, lead and zinc by a constructed wetland treating urban stormwater,” Ap Geochem, vol. 97, pp. 167–180, Oct. 2018. https://doi.org/10.1016/j.apgeochem.2018.08.019

S. Tahervand & M. Jalali, “Sorption and desorption of potentially toxic metals (Cd, Cu, Ni and Zn) by soil amended with bentonite, calcite and zeolite as a function of pH,” GEXPLO, vol. 181, pp. 148–159, Oct. 2017. https://doi.org/10.1016/j.gexplo.2017.07.005

Downloads

Published

2021-05-31

How to Cite

de Moya Sánchez, Ángel, Casierra Martínez, H., Vargas Ramírez, X., & Caselles Osorio, A. (2021). Chromium and Zinc removal from synthetic industrial wastewater in pilot-scale constructed wetlands planted with Cyperus odoratus L. INGE CUC, 17(2), 76–88. https://doi.org/10.17981/ingecuc.17.2.2021.08

Most read articles by the same author(s)