High volume fly ash concrete activated with naoh, sodium sulfate and limestone.

Authors

  • Dimelsa Salazar Carreño Fundación Centro de Desarrollo Tecnológico (CENTREK),, Bogotá, Colombia.
  • Rafael Guillermo García Cáceres Universidad Pedagógica y Tecnológica de Colombia (UPTC), Sogamoso, Colombia.
  • Alejandra Santa Alienergy S.A.S, Bogotá, Colombia.

DOI:

https://doi.org/10.17981/ingecuc.18.1.2022.17

Keywords:

Concrete, Fly Ash, Activation, NaOH, Sodium sulfate, Limestone

Abstract

High amounts of fly ash generated as a by-product of coal combustion in thermal power generation plants have been a concern for years due to their negative environmental impact; in Colombia, for example, this fly ash represents 6,000,000 tons per year. The use of this material in industrial processes is among the many solutions proposed, provided that it has pozzolanic properties useful in cement and concrete industries. The aim of this study is evaluating concrete resistance to compression at different ages, replacing cement by fly ash of 40%, using alkaline activation with NaOH, Sodium Sulfate, and limestone in different proportions. The results show that activation improves fly ash performance and it is possible to achieve better mechanical properties than with mixtures without activation.

Downloads

Download data is not yet available.

References

A. M. Rashad.(2015, Dec). A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer. International Journal of Sustainable Built Environment. [on line]. 4(2), pp. 278–306. https://doi.org/10.1016/j.ijsbe.2015.10.002

K. P. Keith, “Characterization of the Behavior of High Volume Fly Ash Concrete,” thesis, Fac. Grad., Auburn. Univ. Auburn, E.E.U.U., 2011. Availabe at: https://etd.auburn.edu/bitstream/handle/10415/2784/Kevin%20Keith%20Thesis.pdf?sequence=2&isAllowed=y

P. K. Mehta. (1986, Nov.). Effect of Fly Ash Composition on Sulfate Resistance of Cement. Journal Proceedings. 83(6), pp. 994-1000.

V.M. Malotra and P.K. Metha. (2004, Sep.). High-performance, high-volume fly ash concrete, Third. pp. 3-14. available at: http://worldcat.org/isbn/0965231070

J.Z.W. Moon, Z. Wang, M.O. Kim and S. Chun. (2016, Sep.). Strength enhancement of alkaline activated fly ash cured at ambient temperature by delayed activation of substituted OPC. Construction and Building Materials. 122, pp. 659–666. https://doi.org/10.1016/j.conbuildmat.2016.06.111

E.R. Nuñez, “Comportamiento Mecánico y durabilidad de morteros de cenizas volantes activadas alcalinamente,” Thesis, Dep. Ing. Unv. PUJ., Bogotá, Colombia, 2013. Available at: https://repository.javeriana.edu.co/bitstream/handle/10554/11159/RobayoNunezEstefania2013.pdf

M. Criado, A.F. Jiménez and A. Palomo. (2010, Sep.). Effect of sodium sulfate on the alkali activation of fly ash. Cement and Concrete Composites. 32(8), pp. 589–594. https://doi.org/10.1016/j.cemconcomp.2010.05.002

M. Criado, A. Palomo, A. Fernández-Jiménez, and P.F.G. Banfill. (2009, Feb.). Alkali activated fly ash: Effect of admixtures on paste rheology. Rheologica Acta Rheol. 48(4), pp. 447–455. https://doi.org/10.1007/s00397-008-0345-5

B. Siva-Konda, J. Varaprasad and K. Naveen- Kumar. (2010, En.). Strength and workability of low lime fly-ash based geopolymer concrete. Indian Journal of Science and Technology. 3(12), pp. 1188–1189. Doi: 10.17485/ijst/2010/v3i12/29858

M. Criado, "Nuevos materiales cementantes basados en la activación alcalina de cenizas volantes. Carecterización de geles N-A-S-H en función del contenido de sílice soluble. Efecto del Na2 SO4," Ph.D. dissertation, Dept. Quim. Inorganic. Fac. CC., IETcc.,Madrid, Españana. 2007.

D. Salazar-Carreño, R. G. García-Cáceres and O.O. Ortiz-Rodríguez. (2015, Oct.). Laboratory processing of Colombian rice husk for obtaining amorphous silica as concrete supplementary cementing material. Construction and Building Materials. 96(15), pp. 65–75. https://doi.org/10.1016/j.conbuildmat.2015.07.178

A. Bicer. (2018, Jul.). Effect of fly ash particle size on thermal and mechanical properties of fly ash-cement composites. Thermal Science and Engineering Progress. [on line]. 8, pp. 78–82. DOI: 10.1016 / j.tsep.2018.07.014

S.H. Jung, V. Saraswathy, S. Karthick, P. Kathirvel and S. J. Kwon. (2018, Dic.). Microstructure Characteristics of Fly Ash Concrete with Rice Husk Ash and Lime Stone Powder. International Journal of Concrete Structures and Materials. 12(1). DOI: 10.1186/s40069-018-0257-4

A. Palomo, M.W. Grutzeck and M. T. Blanco. (1999, Ag.). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research. 29(8), pp. 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

G. Kovalchuk, A. Fernandez-Jimenez and A. Palomo. (2008, Jul.). Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry. Materiales de Construcción. 58(291), pp. 35–52.

M. Criado, A. Palomo and A. Fernandez-Jimenez. (2005, Nov.). Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel. 84(16), pp. 2048–2054. https://doi.org/10.1016/j.fuel.2005.03.030

S.P. Singh, S. Chowdhury and P.N. Mishra. (2015). An Experimental Investigation on Strength Characteristics of Alkali Activated Fly Ash. Procedia Earth and Planetary Science. 11, pp. 402–409. https://doi.org/10.1016/j.proeps.2015.06.039

D. Velandia-Manchego, C. Lynsdale, F. Ramirez, J. Provis, G. Hermida and A. Gómez. (2013, Dic.). Ultra optimum green concrete using high volume fly ash activated systems. MRS Online Proceeding Library Archive. 53(9), pp. 1689–1699. DOI: 10.1557/opl.2013.1118

Published

2022-08-22

How to Cite

Carreño, D. S., García Cáceres, R. G., & Santa, A. (2022). High volume fly ash concrete activated with naoh, sodium sulfate and limestone . INGE CUC, 18(1), 243–250. https://doi.org/10.17981/ingecuc.18.1.2022.17

Most read articles by the same author(s)