Evaluation of the preliminary and primary treatment for wastewater from industrial food processing in La Grita (Venezuela)

Authors

DOI:

https://doi.org/10.17981/ingecuc.17.1.2021.01

Keywords:

coagulation, evaluation, dissolved air flotation, homogenizer, waste water treatment plant, primary treatment, industrial waste water

Abstract

Introduction: The Venezuelan crisis has decreased industrial production, with the consequent decrease in flow and changes in the quality of the wastewater generated, affecting the effluent treatment systems.

Objective: Evaluate the preliminary and primary treatments of residual water in a food industry located in Táchira (Venezuela) and present alternatives for improvement.

Method: The pumping tank, homogenizer and dissolved air flotation (DAF) were evaluated. For this, water samples were taken and quality parameters were determined, which were compared with what was foreseen in the design. Calculations were performed to verify technical parameters contemplated in the design and literature.

Results:  The flow treated ranges from 0.95 to 2.84 L/s, versus the 12.16 L/s of the design. This has increased the retention time in the treatment units, which, in turn, decreases the pH of the water from 6.10 ± 0.23 to 5.34 ± 0.23 due to the occurrence of anaerobic processes, affecting the coagulation. The DAF is efficient and decreases 79% the TSS and 62% the BOD5,20, but removes the N and P up to 2.5 ± 1 mg/L and 9 ± 4 mg/L, respectively, resulting in insufficient nutrients ratio necessary in biological treatment.

Conclusions: The design of the treatment system had as an error the theoretical quality of the water that was assumed. The decrease in flow affects the preliminary and primary treatment. Improvement measures must be taken in the coagulation and flocculation of the DAF.  

Downloads

Download data is not yet available.

References

A. Noyola, J. M. Morgan-Sagastume & L. P. Güereca, Selección de Tecnologías para el Tratamiento de Aguas Residuales. CDMX: UNAM, 2013. Available: http://www.pronatura-sur.org/web/docs/Tecnologia_Aguas_Residuales.pdf

C. Suher, J. Almarza, F. Pedrique, C. Cárdenas & L. Herrera, “Optimización del proceso de tratamiento de aguas residuales de una industria cervecera,” Interciencia, vol. 34, no. 11, pp. 764–770, Nov. 2009. Available: https://www.interciencia.net/wp-content/uploads/2018/01/764-YABROUDI-7.pdf

B. Henry, J. Monge, J. Moscoso, S. Oakley, L. Salguero y P. Saravia. Tratamiento de Aguas Residuales Domésticas en Centroamérica. Un Manual de Experiencias, Diseño, Operación y Sostenibilidad, 2 ed, Gt, USA: USAC, 2011. Available: http://www.da.go.cr/wp-content/uploads/2017/01/Manual-Tratamiento-Aguas-Residuales-en-CA.Final_.06.06.11.pdf

M. M. Ronces, “Evaluación de funcionamiento de plantas de tratamiento de aguas residuales de un mucipio del sureste de México,” Proyecto grado, dpto Quím, UAEMX, Toluca, Mx, 2018. Available: http://hdl.handle.net/20.500.11799/94946

Y. Pineda & A. Avalos, “Evaluación de la Planta de Tratamiento de Aguas Residuales del municipio de La Palma, departamento de Chalatenango, El Salvador,” Proyecto grado, dpto Cs Agr, UES, SV, 2019. Disponible en http://ri.ues.edu.sv/id/eprint/19737

G. Ramírez & J. Tutillo, “Evaluación hidráulico – sanitaria de la planta de tratamiento de aguas residuales de la comunidad Buena Esperanza, parroquia Cangahua, cantón Cayambe, provincia Pichincha,” Proyecto grado, dpto Cs Fis Mat, UCE, UIO, 2018 . Disponible en http://www.dspace.uce.edu.ec/handle/25000/16226

M. Y. de la Vega, Eficiencia en plantas de tratamiento de aguas residuales. Contribución a la gestión y desarrollo social. MX DF, MX: Refugia, 2012. Disponible en http://indesol.gob.mx/cedoc/pdf/III.%20Desarrollo%20Social/Agua%20y%20Saneamiento/Eficiencia%20en%20Plantas%20de%20Tratamiento%20de%20Aguas%20Residuales.pdf

C. Mora, “Propuesta de mejora para una planta de tratamiento de aguas residuales industriales de una empresa de producción de alimentos ubicada en La Grita, municipio Jáuregui, estado Táchira,” Proyecto grado, dpto Ing Amb, UNET, Táchira, VE, 2019. Disponible en http://curly.unet.edu.ve/sicpro/publico/proyectos?sort=FechaFin.desc&page=15

APHA, AWWA & WPCF, Métodos normalizados para el análisis de aguas potables y residuales. 17 Ed. MAD, ES: Ediciones Díaz de Santos, 1992.

WTW, “Oxitop(r) respirometeres,” [online , Xylem Inc, Rye Brook, NY, USA, 2019. Available: https://www.xylemanalytics.com/en/products/oxitop-respirometers

Hach, “Colorímetros,” [online , Hach Co, LVLD, USA, 2021. Available: https://es.hach.com/quick.search-quick.search.jsa?keywords=Color%C3%Admetros

A. Pulido, L. Sánchez & M. Cárdenas, “Tratamiento de agua por coagulación floculación,” Práctica No. 03, Táchira, VE: UNET, Mar. 2017.

Metcalf & Eddy, Ingeniería de Aguas Residuales. Tratamiento, vertido y reutilización. 3 Ed, vol. 1-2, MAD, ES: McGrall-Hill, 1995.

J. A. Romero, Tratamiento de Aguas Residuales. Teoría y principios de diseño. Bog, Co: Escuela Ing, 1999.

Diseños Ambientales C.A., Ampliación de la planta de tratamiento de aguas residuales industriales y domésticas de Snacks América Latina, La Grita, estado Táchira, Tachira, VE: DISA, 2006.

P. Poirrier, “Hidrólisis y acidificación psicrófila de moléculas complejas en sistemas anaerobios,” Tesis doctoral, dpto Ing Quím, USC, SCQ, ES, Dic. 2005. Recuperado de https://www.usc.es/biogroup/sites/default/files/PaolaPoirrier.pdf

Y. Lorenzo y M. Obaya, “La digestión anaerobia. Aspectos teóricos. Parte I,” ICIDCA, vol. 39, no. 1, pp. 35–48, Ene. 2005. Recuperado de https://www.redalyc.org/pdf/2231/223120659006.pdf

R. Parra, “Digestión anaeróbica: mecanismos biotecnológicos en el tratamiento de aguas residuales y su aplicación en la industria alimentaria,” Producción + Limpia, vol. 10, no. 2, pp. 142–159, Jul. 2015. Disponble en http://repository.lasallista.edu.co/dspace//handle/10567/1436

M. Ramos, G. Rodríguez, R. Santiago, S. Alemán, O. Castillo & A. Perales, “Production and characterization of a snack based on maize flour and Atlantic mackerel (Scomber scombrus),” CyTA - Journal of Food, vol. 17, no. 1, pp. 1006–1013, Dic. 2019. https://doi.org/10.1080/19476337.2019.1690584

C. España, “Análisis de eficiencia y funcionamiento de la planta de tratamiento de aguas residuales de la empresa Lácteos Andinos de Nariño LDTA,” Proyecto grado, UIS, SDR, CO, 2008.

K. Pimiento, “Evaluación de la planta de tratamiento de aguas residuales de una empresa dedicada a la elaboración de productos de origen lácteo,” Proyecto grado, dpto. Ing Amb, UNET, Táchira, VE, 2017.

Y. Caldera, E. Gutiérrez, M. Luengo, J. Chávez & L. Ruesga, “Evaluación del sistema de tratamiento de aguas residuales de industria avícola,” Rev Cient, vol. XX, no. 4, pp. 409–416, Jul-Agos. 2010. Disponible en https://produccioncientificaluz.org/index.php/cientifica/article/view/15581

O. I. Gallegos, “Evaluación del sistema de tratamiento de aguas residuales de una planta de procesos avícola,” Proyecto grado, dpto Ing Quím, UNI, Mga, NI, 2012. Recuperado de http://ribuni.uni.edu.ni/623/1/37985.pdf

K. A. Ayala, “Evaluación de procesos para la remoción de iones de cloruro en el agua residual de la planta de alimentos PepsiCo (Funza),” Proyecto grado, dpto Ing, Uniamerica, Bog, Co, 2016. Disponible en http://52.0.229.99/handle/20.500.11839/580

J. Suárez, A. Jácome & P. Ures, Coagulación-Floculación, UDC, ES, FT-PRI-001, Jul. 2014. Available: https://www.wateractionplan.com/documents/177327/558161/Coagulaci%C3%B3n-floculaci%C3%B3n.pdf/b59be3a9-558c-62c3-66e1-d89f82e3aae7

J. A. Romero, Calidad del Agua. Mx, D.F. MX: Escuela Colombiana de Ingeniería, pp. 67–71, 2002.

C. M. Luna, “Influencia del pH en la coagulación-sedimentación primaria de aguas residuales de un camal,” Proyecto grado, dpto Ing, UNAC. Cll., Cll., Pe, 2017. Disponible en http://repositorio.unac.edu.pe/handle/UNAC/2244

M. E. Landi, “Evaluación técnica de la planta de tratamiento de aguas residuales de una industria láctea,” Proyecto grado, Esc. Form. Tecn, EPN, UIO, EC, 2018. Disponible en http://bibdigital.epn.edu.ec/handle/15000/19553

A. M. Bolaño, “Sistema de flotación por aire disuelto para el tratamiento de aguas residuales industriales,” Proyecto de grado, EIA, ENV, CO, 2009. Recuperado de https://repository.eia.edu.co/bitstream/11190/1918/1/Bola%C3%B1oAlberto_2009_SistemaFlotacionAire.pdf

Y. Caldera, M. Sánchez & E. Gutiérrez, “Calidad física de aguas residuales de una industria avícola en un sistema de flotación por aire disuelto con coagulantes,” Rev Tecn URU, no. 13, pp. 57–66, Jul.-Dic. 2017. Disponible en http://uruojs.insiemp.com/ojs/index.php/tc/article/view/429

República Bolivariana de Venezuela, “Normas para la Clasificación y el Control de la Calidad de los Cuerpos de Agua y Vertidos o Efluentes Líquidos,” Decreto 883, Gaceta Oficial No. 5021 Extraordinario, Dic. 18, 1995 .

M. J. del Campo y E. Castelló, “Análisis de la operación de sistemas de remoción de nutrientes en efluentes industriales,” presentado en el X Cong. Nac. del Cap. Uruguayo, AIDIS, MVD, URU, pp, 28-29 Ago. 2019. Recuperado de https://aidis.org.uy/img/trabajos-tecnicos-congreso-2019/17-DelCampo.pdf

A. M. Márquez & E. Guevara, “Descripción y evaluación del funcionamiento de un sistema de tratamiento de aguas residuales en una industria avícola,” Rev Ing UC, vol. 11, no. 2, pp. 92–101, Ago. 2004. Recuperado de http://servicio.bc.uc.edu.ve/ingenieria/revista/v11n2/11-2-9.pdf

E. Medina, K. Pimiento, J. Rozo & O. Rodríguez, “Resultados sobre test’s de jarras comparativo de coagulante: Policloruro de Aluminio (PAC) & Sulfato de Aluminio (SAL) para el tratamiento de aguas residuales industriales de PepsiCo alimentos S.C.A, Planta La Grita,” PepsiCo y Alfa Atlantic, Táchira, VE, Informe, Sep. 2018.

J. M. Cogollo, “Clarificación de aguas usando coagulantes polimerizados: caso del hidroxicloruro de aluminio,” Dyna, vol. 78, no. 165, pp. 18–27, Feb. 2011. Disponible en https://revistas.unal.edu.co./index.php/dyna/article/view/25636/39133

Published

2020-10-28

How to Cite

Pimiento, K., & Cárdenas, M. J. (2020). Evaluation of the preliminary and primary treatment for wastewater from industrial food processing in La Grita (Venezuela). INGE CUC, 17(1), 1–14. https://doi.org/10.17981/ingecuc.17.1.2021.01