Comparison of the structural response of a box girder bridge with successive cantilevers during construction and in service in three scenarios of relative humidity in Colombia

Authors

DOI:

https://doi.org/10.17981/ingecuc.18.1.2022.05

Keywords:

Relative Humidity, Construction Stage, Box Girder Bridge, Creep, Shrinkage, Balanced cantilever

Abstract

Introduction— The construction of box girder bridges has increased in recent years in Colombia. Some previous studies have shown the significant effects in the results due to omission of the construction process, the rheological properties of the materials, and the environmental conditions can generate significant effects on the results. Due to the variety in the different territories of Colombia, it is interesting to determine the effect of these conditions on the structural response of the bridge.

Objective— The main goal of the study is to quantify the variations in the structural response of the main elements of a post–tensioned box girder bridge, during construction and in service, due to changes of the relative humidity of the environment.

Method— A computational model of a representative Colombia bridge studied was developed in the software Midas Civil. The model includes the time–dependent effects of the materials. Three different (extreme high, medium, and extreme low) values of relative humidity were used in the analysis.

Results— The variation in the longitudinal bending moment, shear and axial forces, and the deflection of the girder, and those of the columns bending moment were calculated by varying the relative humidity of the environment.

Conclusions— Negligible variations in the structural response of the bridge elements during construction after modifying the relative humidity. On the other hand, some elements (especially the girder) responses showed sensibility and considerable changes due to modification of the environment parameter.

Downloads

Download data is not yet available.

References

C. Fernández, “Ejecución de puentes pretensados por voladizos sucesivos”, Inf Constr, vol. 16, no. 156, pp. 73–83, Dic. 1963. https://doi.org/10.3989/ic.1963.v16.i156.4622

S. López y F. Tarquis, “Algunos métodos constructivos de puentes de gran luz”, ROP, no. 3752, pp. 42–55, Ene. 2016. https://fdocuments.co/document/algunos-mtodos-constructivos-de-puentes-de-gran-puentes-arco-aqu-hay-bastantes.html?page=1

R. Valle-Pascual, N. Carvajal-Monsalve, y J. C. Botero-Palacio, “Evolución de los parámetros geométricos de diseño en puentes construidos con voladizos sucesivos in situ”, Rev UIS Ing, vol. 16, no. 1, pp. 85–100, Nov. 2017. https://doi.org/10.18273/revuin.v16n1-2017009

S. Ates, “Numerical modelling of continuous concrete box girder bridges considering construction stages”, Appl Math Model, vol. 35, no. 8, pp. 3809–3820, Aug. 2011. https://doi.org/10.1016/j.apm.2011.02.016

H. Somja and V. de Ville, “A new strategy for analysis of erection stages including an efficient method for creep analysis”, Eng Struct, vol. 30, no. 10, pp. 2871–2883, Oct. 2008. https://doi.org/10.1016/j.engstruct.2008.03.015

H.-G. Kwak & J.-K. Son, “Determination of design moments in bridges constructed with a movable scaffolding system (MSS)”, Comput Struct, vol. 84, no. 31–32, pp. 2141–2150, Dec. 2006. https://doi.org/10.1016/j.compstruc.2006.08.044

H.-G. Kwak and J.-K. Son, “Span ratios in bridges constructed using a balanced cantilever method”, Constr Build Mater, vol. 18, no. 10, pp. 767–779, Dec. 2004. https://doi.org/10.1016/j.conbuildmat.2004.04.022

A. C. Altunişik, A. Bayraktar, B. Sevim, S. Adanur & A. Domaniç, “Construction stage analysis of Kömürhan highway bridge using time dependent material properties”, Struct Eng Mech, vol. 36, no. 2, pp. 207–223, Sep. 2010. https://doi.org/10.12989/sem.2010.36.2.207

Z. Bažant, Q. Yu, H. Asce & G.-H. Li, “Excessive long–time deflections of prestressed box girders. I: Record–span Bridge in Palau and other paradigms”, J Struct Eng, vol. 138, no. 6, pp. 676–686, Jun. 2012. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000487

Z. Bažant, Q. Yu & G.-H. Li, “Excessive long–time deflections of prestressed box girders. II: Numerical analysis and lessons learned,” J Struct Eng, vol. 138, no. 6, pp. 687–696, Jun. 2012. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000375

L. Rincón, Á. Viviescas, G. Chio, E. Osorio & C. Riveros, “Comparative analysis for monitoring long–term behavior of box girder bridges in Colombia”, presented at IABSE Congress, International Association for Bridge and Structural Engineering, NYC, NY, USA, Sept. 4-6 2019. https://doi.org/10.2749/newyork.2019.2114

CEB–FIP Model Code 1990, CEB-FIP, Euro-International Committee for Concrete/International F­ederation for Pre-stressing, LDN, ENG, 1991. https://doi.org/10.1680/ceb-fipmc1990.35430.fm

R. A. Medeiros-Junior, “Impact of climate change on the service life of concrete structures”, in Eco-­efficient Repair and Rehabilitation of Concrete Infrastructures, EGSU, UK: Woodhead Publishing, 2018, pp. 43–68.

M. Suárez, “Análisis del comportamiento estructural de puente viga cajón sometido a acciones sísmicas durante su construcción por voladizos sucesivos”, Tesis de Maestría, Fac Ing, UIS, BGA, CO, 2016.

Midas. Midas Civil Online manual Civil structure design system (2018). [Online]. Available: http://manual.­midasuser.com/EN_Common/Civil/865/index.htm

Norma Colombiana de Diseño de Puentes, LRFD CCP14, AIS, Asociación Colombiana de Ingeniería, BOG, CO, 2014. Disponible en https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/3709-norma-colombiana-de-diseno-de-puentes-ccp14

AASHTO, AASHTO LRFD Bridge Design Specifications, 6th ed. WA, USA: AASHTO, 2012.

AASHTO, AASHTO LRFD Bridge Design Specifications, 7th ed. WA, USA: AASHTO, 2014.

M. Grabow, “Construction stage analysis of cable–stayed bridges,” Master Thesis, TU Hamburg, HH, DE, 2004.

E. Diaz & C. Santos, “Efecto de la humedad relativa en el comportamiento estructural de un puente viga cajón construido por el método de voladizos sucesivos,” Tesis de pregrado, UIS, BGA, CO, 2014.

J. F. Ruiz, Cambio climático en temperatura, precipitación y humedad relativa para Colombia usando modelos meteorológicos de alta resolución (Panorama 2011–2100). BOG, CO: IDEAM, 2010. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=1884&shelfbrowse_itemnumber=2040

P. F. Takács, “Deformations in Concrete Cantilever Bridges: Observations and Theoretical Modelling”, doctoral thesis, NTNU, TRH, NO, 2002. Available: http://hdl.handle.net/11250/231135

A. Aili and J.-M. Torrenti, “Modeling Long–term Delayed Strains of Prestressed Concrete with Real Temperature and Relative Humidity History”, JACT, vol. 18, no. 7, pp. 396–408, Jul. 2020. https://doi.org/10.3151/jact.18.396

Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete, ACI 209-2R-08, ACI, American Concrete Institute, Farmington Hills, MI, USA, 1997. Recuperado de http://www.civil.north­western.edu/people/bazant/PDFs/Papers/R21.pdf

Published

2022-03-10

How to Cite

Santos Durán, C. M., Díaz Durán, E. F., & Benjumea Royero, J. M. (2022). Comparison of the structural response of a box girder bridge with successive cantilevers during construction and in service in three scenarios of relative humidity in Colombia. INGE CUC, 18(1), 51–65. https://doi.org/10.17981/ingecuc.18.1.2022.05