CFD analysis of the airflow behavior in the intake system of a low-displacement diesel engine

Authors

DOI:

https://doi.org/10.17981/ingecuc.16.2.2020.23

Keywords:

Diesel engines, OpenFOAM, CFD, discharge coefficient, swirl motion

Abstract

Introduction— The airflow analysis for Internal Combustion Engines (ICE) remains challenging for researchers due to the complexity of the flow interactions inside the cylinder. Different flow characteristics such as turbulence, instability, periodicity, and non-stationary conditions required advanced methods to describe the overall behavior. The present study proposed the implementation of a turbulence model through Computational Fluid Dynamics (CFD) analysis that further simplifies the airflow phenomena for low-displacement engines while describing the parameters that influence the engine efficiency and emissions.

Objectives— The study aims to analyze the airflow behavior in the intake system of a low-displacement diesel engine with natural aspiration through an experimental model adjusted by CFD analysis.

Methodology— The analysis of the airflow behavior in the intake system of the engine was carried out with an experimental model that describes the airflow characteristics. This model is adjusted via CFD analysis in OPENFOAM®, which determines Both Discharge (DC) and Swirl Coefficients (SC) to describe the flow interactions in the intake system.

Results— The DC values ranged between 0 L/D to 0.5 L/D, indicating that this engine can displace 50% of the ideal airflow with a valve diameter of 30.5 mm and a chamber volume of 0.3 L. In contrast, the SC, for a variable reference area, ranged from 0. L/D 3 to 0.19 L/D, stating that the engine experiences less airflow displacement, specifically 11% of the theoretical capacity as the mass flow increases for each valve lift.

Conclusions— In conclusion, the methodology implemented in the study showed that for rotatory regimes of 3000 rpm and 3400 rpm, a concrete vortex is generated with velocity values between 10 m/s and 20 m/s in the peripherical region, which ensures the airflow rotation with vorticity inside the cylinder. At 3400 rpm, the SC value increments are compared to other regimes when the end of the valve lift distance is reached. Thus, it can be verified that under this regime, the optimal vorticity generation is achieved, which contributes to reduce emissions and boost the global efficiency of the engine.

Downloads

Download data is not yet available.

Author Biographies

Carlos Santos, Universidad del Atlántico, Barranquilla (Colombia)

Reseacher 

Luis Perez, Universidad del Atlántico. Barranquilla, (Colombia)

Reseacher  

Jorge Duarte Forero, Universidad del Atlántico. Barranquilla, (Colombia)

Docente Investigador del programa de Ingeniería Mecánica de la Universidad del Norte.

References

Y. Varola, H. F. Oztop, M. Firata & A. Kocab, “CFD Modeling of heat transfer and fluid flow inside a pent-roof type combustion,” Int Commun Heat Mass, vol. 37, no. 9, pp. 1366–1375, Nov. 2010. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.003

S. Jiang, S. Zhu, H. Wen & S. Huang, “Parameter analysis of diesel helical intake port numerical desing,” Energy Procedia, vol. 16, Part A, pp. 558–563, 2012. https://doi.org/10.1016/j.egypro.2012.01.090

B. Jayashankara & V. Ganesan, “Effect of fuel injection timing and intake pressure on the performance of DI diesel Engine - A parametric study using CFD,” Energy Convers Manag, vol. 51, no. 10, pp. 1835–1848, 2009. http://dx.doi.org/10.1016/j.enconman.2009.11.006

G. Kalghatgi, “Developments in internal combustion engines and implications for combustion science and future transport fuels,” Proc Combust Inst, vol. 35, no. 1, pp. 101–115, 2014. https://doi.org/10.1016/j.proci.2014.10.002

A. Gil, Modelado tridimensional del flujo de aire en el cilindro de motores diesel de inyeccion directa. VA, ES: Reverte, 2007.

J. S. Meurer, “Die Erzeugung von Drehbewegungen der Luft in den Zylindern schnellaufender Viertakt-Dieselmaschinen durch die Einlaßorgane,” MAN-Forsch, n. 1, s. 8–22, 1951.

G. Thien, “Entwicklungsarbeiten an ventilkanälen on viertakt Diesel Motoren,” ÖIZ, vol. 8, n. 9, 1965.

T. Uzkan, C. Borgnakke & T. Morel, “Characterization of Flow produced by a high-swirl inlet port,” IHC, AA, MI, USA, SAE Technical Papers 830266, 1983. https://doi.org/10.4271/830266

J. Morea-Roy, M. Muñoz & F. Moreno, “Simulación numerica del ciclo operativo de un motor de encendido provocado,” Rev inter met num calc dis ing, vol. 15, no. 2, pp. 207–216, 1999. Disponible en http://hdl.handle.net/2099/4567

A. Rahiman, A. Razak, M. Samee & M. K. Ramis, “CFD Analysis of flow field development in a direct injection diesel engine with different manifolds,” Am J Fluid Dyn, vol. 4, no. 3, pp. 102–113, 2014. Available: http://article.sapub.org/10.5923.j.ajfd.20140403.03.html

R. Holkar, Y. N. Sule-Patil, S. M. Pise, Y. A. Godase & V. Jagadale, “Numerical simulation of steady flow through engine intake system using CFD,” IOSR JMCE, vol. 12, no. 1, pp. 30–45, 2015. Available: https://www.iosrjournals.org/

J. V. Pastor, Movimiento del aire en motores diesel de inyeccion directa, VAL, ES: UPV, 1997.

G. Thien, “Derivation of the formulas for the evaluation of stationary flow measurements,” ÖIZ, AU, VIE, AVL-FA-Report Nº. 463/Gen./072, 1978.

G. Thien, “Entwicklungsarbeiten an Ventilkanalen von Viertakt Dieselmotoren,” ÖIZ, vol. 9, 1965.

J. C. Dent & J. A. Derham, “Air Motion in a Four-Stroke Direct Injection Diesel Engine,” IME, vol. 188, no. 21, pp. 269–280, Jun. 1974. https://doi.org/10.1243%2FPIME_PROC_1974_188_030_02

G. C. Davis & J. C. Kent, “Comparison of model calculations and experimental measurements of the bulk cylinder flow processes in a motored PROCO engine,” SAE, DET, USA, SAE Technical Paper 790290, 1979. https://doi.org/10.4271/790290

R. C. Engineers, “Information to clients on Ricardo’s Laser-Doppler velocimeter,” Ricardo Engineering Report, 1976.

A. Murakami, M. Arai & H. Hiroyasu, “Swirl Measurements and Modelling in Direct Injection Diesel Engines,” Univ Hiroshima, HIJ, JPN, SAE Technical Paper 880385, 1988. https://doi.org/10.4271/880385

R. Leal & J. L. Filgueiras, “Industrial airflows numerical simulation in ducts and devices using all-speed algorithm in structured meshes,” Ingeniare, vol. 26, no. 2, pp. 273–282, 2008. http://dx.doi.org/10.4067/S0718-33052018000200273

L. Rodríguez, M. Collado, E. Rodríguez & L. Patiño, “Análisis numérico del comportamiento del aire en un sistema de distribución de aire acondicionado empleando los modelos de turbulencia K-E, RNG K-E y el modelo de las tensiones de Reynolds,” Ingeniare, vol. 16, no. 2, pp. 370–382, 2008. http://dx.doi.org/10.4067/S0718-33052008000200012

G. P. Blair, H. B. Lau, A. Cartwright, B. D. Raghunathan & D. O. Mackey, “Coefficients of Discharge at the Aperatures of Engines,” J Engines, vol. 104, no. 3, pp. 2048–2062, 1995. https://doi.org/10.4271/952138

J. Derham, “Air Motion in a Four Stroke Direct Injection Diesel Engine,” Doctoral Thesis, LUT, Loughb, ENG, 1971. Available: https://hdl.handle.net/2134/36161

H. Fujimoto, T. Nakagawa, H. Kudo, T. Wakisaka & Y. Shimamotoc, “A study on the formation of vertical vortex in the cylinder of an I.C engine using CFD: Effect of intake valve closing timing,” JSAE , vol. 16, no. 4, pp. 349–355, 1995. https://doi.org/10.1016/0389-4304(95)00041-5

J. Benajes, X. Margot, J. Pastor & A. Gil, “Three dimensional calculation of the flow in a DI Diesel engine with variable swirl PORTS,” ATTCE, BCN, ES, SAE Technical Paper 2001-01-3230, 2001. https://doi.org/10.4271/2001-01-3230

S. Zirngibl, M. Prager & G. Wachtmeister, “Experimental and Simulative Approaches for the determination of the discharge coefficients for inlet and exhaust valves and ports in internal combustion engines,” presented SAE World Congress Experience, WCX™ 17, DET, USA, 2017. http://dx.doi.org/10.4271/2017-01-5022

S. F. Wang & B. E. Milton, “Investigation of the Helical Inlet Port,” presented in International Fall Fuels and Lubricants Meeting and Exposition, TIB, TLS, USA, Oct. 13-16, 1997. https://doi.org/10.4271/982539

G. M. Bianchi, G. Cantore & S. Fontanesi, “Turbulence Modelling in CFD Simulation of ICE Intake Flows: The Discharge Coefficient Prediction,” J Engines, vol. 111, sec. 3, pp. 1901–1918, 2002. http://dx.doi.org/10.4271/2002-01-1118

G. Tippelmann, “A new method of investigation of swirl ports,” SAE Transactions, vol. 86, sec. 3, pp. 1745–1757, 1977. https://doi.org/10.4271/770404

L. Stager & R. Reitz, presented in “Assessment of Diesel Engine Size-Scaling Relationships,” SAE World Congress, UW, DET, USA, 16-19 Apr. 2007. https://doi.org/10.4271/2007-01-0127

Ignacio Gómez IHM , “Motores,” igihm.com. Available: https://www.igihm.com/motores/ (accessed aug. 12, 2019).

P. Stephenson & C. Rutland, “Modeling the Effects of Valve Lift Profile on Intake Flow and Emissions Behavior in a DI Diesel Engine,” Fuels and Lubricants Meeting and Exhibition, SAE, TOR, CA, 16-19 Oct. 1995. https://doi.org/10.4271/952430

F. Payri, J. Benajes, X. Margot & A. Gil, “CFD modeling of the in-cylinder flow in direct-injection Diesel engines,” Comput Fluids, vol. 33, no. 8, pp. 995–1021, Sep. 2004. https://doi.org/10.1016/j.compfluid.2003.09.003

A. M. Bharadwaj, K. Madhu, K. J. Seemanthini, K. G. Vismay, T. Aravind & A. M. Shivapuji, “Study of Swirl and Tumble Motion using CFD,” IJTRME, vol. 1, no. 2, pp. 5–8, 2013. Available from http://www.irdindia.in/journal_ijtarme/pdf/vol1_iss2/2.pdf

L. Staples, R. Reitz & C. Hergart, “An Experimental Investigation into Diesel Engine Size-Scaling Parameters,” SAE Int J Engines, vol. 2, no. 1, pp. 1068–1084 , 2009. https://doi.org/10.4271/2009-01-1124

Y. Shi & R. Reitz, “Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales,” SAE World Congress & Exhibition, SAE, DET, USA, p. 1–21, 14-17 Apr. 2008. https://doi.org/10.4271/2008-01-0955

M. Tess, C. Lee & R. Reitz, “Diesel Engine Size Scaling at Medium Load without EGR,” SAE Int. J. Engines, vol. 1, no. 1, pp. 1993–2009, 2011. https://doi.org/10.4271/2011-01-1384

M. Masi, L. Artico & P. Gobbato, “Measurements of the Intake and In-Cylinder Flow Field to investigate the reliability of CFD Steady-state simulation for actual engines,” 12th International Conference on Engines & Vehicles, SAE, Capri, IT, 13-17 Sept. 2015. https://doi.org/10.4271/2015-24-2404

X. Yang, T.-W. Kuo, O. Guralp, R. O. Grover & P. Najt, “In-Cylinder Flow Correlations between steady flow bench and motored engine using computational fluid dynamics,” J Eng Gas Turbine Power J Eng Gas Turb Power, vol. 139, no. 7, pp. 1–8, 2017. https://doi.org/10.1115/1.4035627

B. V. V. S. U. Prasad, C. S. Sharma, T. N. C. Anand & R. V. Ravikrishna, “High swirl-inducing piston bowls in small diesel engines for emission reduction,” Applied Energy, vol. 88, no. 7, pp. 2355–2367, 2011. https://doi.org/10.1016/j.apenergy.2010.12.068

M. Battistoni, A. Cancellieri & F. Mariani, “Steady and Transient Fluid Dynamic Analysis of the tumble and swirl evolution on a 4V engine with independent intake valves action,” PF&L Meeting, SAE, RSMT, USA, 6-9 Oct. 2008. https://doi.org/10.4271/2008-01-2392

A. A. E.-S. Mohamed, S. Abo-Elfadl, A. E.-M. M. Nassib, “Effect of shroud and orientation angles of inlet valve on flow characteristic through helical-spiral inlet port in diesel engine,” J. Eng. Gas Turbines Power, vol. 139, no. 10, pp. 1–7, Oct. 2017. https://doi.org/10.1115/1.4036381

E. Barrientos, I. Bortel, M. Takats & J. Vavra, “Impact of intake induced swirl on combustion and emissions on a single cylinder diesel engine,” ICEF, ASME, GRVL, USA, 9–12 Oct. 2016. http://dx.doi.org/10.1115/ICEF2016-9325

Published

2020-10-30

How to Cite

Santos, C., Perez, L., & Duarte Forero, J. (2020). CFD analysis of the airflow behavior in the intake system of a low-displacement diesel engine. INGE CUC, 16(2), 285–298. https://doi.org/10.17981/ingecuc.16.2.2020.23