Mathematical model for quay crane assignment problem with tidal constraints

Authors

  • Carlos Alberto Arango Pastrana Universidad del Valle. Cali, (Colombia) https://orcid.org/0000-0001-7314-816X
  • Cristhian Vidales Velez Universidad del Valle. Cali, (Colombia)
  • Jhon Edward Molina Agudelo Universidad del Valle. Cali, (Colombia)
  • Juan José Bravo Bastidas Universidad del Valle. Cali, (Colombia) https://orcid.org/0000-0001-5213-5765
  • Leidy Carolina Vargas Acuña Universidad del Valle. Cali, (Colombia)

DOI:

https://doi.org/10.17981/ingecuc.17.1.2021.14

Keywords:

tides, quay assignment, mixed integer programming, container terminal

Abstract

Objetive: The operations associated with loading and unloading of container ships demand the use of quay cranes that represent one of the most expensive resources of a maritime terminal. Therefore, the assignment of cranes to ships must be optimized. This article proposes a mathematical model to optimize the decision of assignment of cranes to ships, considering the behavior of tides, which is a not commonly considered factor in the scientific literature for similar problems.

Metodology: A mixed integer linear mathematical model was designed and tested for the actual case of a container terminal in Buenaventura-Colombia with satisfactory results.

Results: With the available capacity the model allows to mobilize up to 2800 containers per half day, while the number of containers per ship in the real case does not exceed 2000 units.

Conclusions: The consideration of tides, combined with downtime penalty cost can allow using smaller number of cranes with savings in energy cost.

Downloads

Download data is not yet available.

References

R. I. Peterkofsky & C. F. Daganzo, “A branch and bound solution method for the crane scheduling problem,” Transp Res Part B-Meth, vol. 24, no. 3, pp. 159–172, Jun. 1990. https://doi.org/10.1016/0191-2615(90)90014-P

A. Diabat & E. Theodorou, “An Integrated Quay Crane Assignment and Scheduling Problem,” Comput Ind Eng, vol. 73, no. 1 , pp. 115–123, Jul. 2014. https://doi.org/10.1016/j.cie.2013.12.012

L. Moccia, J. F. Cordeau, M. Gaudioso & G. Laporte, “A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal,” Nav Res Logist, vol. 53, no. 1, pp. 45–59, 2006. https://doi.org/10.1002/nav.20121

S. H. Jung & K. H. Kim, “Load scheduling for multiple quay cranes in port container terminals,” J Intell Manuf, vol. 17, no. 4, pp. 479–492, 2006. https://doi.org/10.1007/s10845-005-0020-y

W. C. Ng & K. L. Mak, “Quay crane scheduling in container terminals,” Eng Optim, vol. 38, no. 6, pp. 723–737, 2006. https://doi.org/10.1080/03052150600691038

K. H. Kim & Y. M. Park, “A crane scheduling method for port container terminals,” Eur J Oper Res, vol. 156, no. 3, pp. 752–768, Aug. 2004. https://doi.org/10.1016/S0377-2217(03)00133-4

A. V. Goodchild & C. F. Daganzo, “Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations,” Transp Sci, vol. 40, no. 4, pp. 473–483, Nov. 2006. https://doi.org/10.1287/trsc.1060.0148

A. V. Goodchild & C. F. Daganzo, “Crane double cycling in container ports: Planning methods and evaluation,” Transp Res Part B:Meth, vol. 41, no. 8, pp. 875–891, Oct. 2007. https://doi.org/10.1016/j.trb.2007.02.006

H. Zhang & K. H. Kim , “Maximizing the number of dual-cycle operations of quay cranes in container terminals,” Comput Ind Eng, vol. 56, no. 3, pp. 979–992, Apr. 2009. https://doi.org/10.1016/j.cie.2008.09.008

A. Lim, B. Rodrigues, F. Xiao & Y. Zhu, “Crane scheduling with spatial constraints,” Nav Res Logist, vol. 51, no. 3, pp. 386–406, 2004. https://doi.org/10.1002/nav.10123

D. H. Lee, H. Q. Wang & L. Miao, “Quay crane scheduling with non-interference constraints in port container terminals,” Transp Res Part E Logist Transp Rev, vol. 44, no. 1, pp. 124–135, Jan. 2008. https://doi.org/10.1016/j.tre.2006.08.001

J. He, “Berth allocation and quay crane assignment in a container terminal for the trade-off between time-saving and energy-saving,” Adv Eng Inform, vol. 30, no. 3, pp. 390–405, 2016. https://doi.org/10.1016/j.aei.2016.04.006

S. Yu, S. Wang & L. Zhen, “Quay crane scheduling problem with considering tidal impact and fuel consumption,” Flex Serv Manuf J, vol. 29, pp. 345–368, Dec. 2017. https://doi.org/10.1007/s10696-016-9248-4

A. Sheikholeslami, G. Ilati & M. Kobari, “The continuous dynamic berth allocation problem at a marine container terminal with tidal constraints in the access channel,” IJCE, vol. 12, no. 3 and A, pp. 344–353, 2014. Available: http://ijce.iust.ac.ir/article-1-848-en.html

Y. Du, Q. Chen, J. S. L. Lam, Y. Xu & J. X. Cao, “Modeling the impacts of tides and the virtual arrival policy in berth allocation,” TRSC, vol. 49, no. 3, pp. 939–956, 2015. https://doi.org/10.1287/trsc.2014.0568

D. Xu, C.L. Li & J.Y.T. Leung, “Berth allocation with time-dependent physical limitations on vessels,” Eur J Oper Res, vol. 216, no. 1, pp. 47–56, Jan. 2012. https://doi.org/10.1016/j.ejor.2011.07.012

O. Doerr & R. J. Sanchez, “Indicadores de productividad para la industria portuaria. Aplicable en América Latina y el Caribe,” CEPAL, SFGO, CL: ONU, pp. 1–76, 2006. Available: https://www.oas.org/cip/docs/areas_tecnicas/6_exelencia_gestion_port/3_ind_de_produc.pdf

Published

2021-01-25

How to Cite

Arango Pastrana, C. A., Vidales Velez, C., Molina Agudelo, J. E., Bravo Bastidas, J. J., & Vargas Acuña, L. C. (2021). Mathematical model for quay crane assignment problem with tidal constraints. INGE CUC, 17(1), 177–187. https://doi.org/10.17981/ingecuc.17.1.2021.14