Ultraviolet measurement station energized by a Photovoltaic System
DOI:
https://doi.org/10.17981/ingecuc.16.2.2020.12Keywords:
ultraviolet radiation, photovoltaic system, electromagnetic spectrum, incident ultraviolet radiation, solmaphoreAbstract
Introduction— This article discusses the design and implementation of a UV Radiation Measurement Station, known as “Solmaphore”, and energized by an isolated photovoltaic system and information management via web using the Internet of Things (IoT) concept. The implementation of equipment that registers and shows in different ways the incident radiation (IUV) now and, it includes the Timer Off technique to reduce energy consumption. For the design of the device, the Top Down methodology was used, which the composition starts from a higher level, then, it is divided into modules and is followed by a verification and simulation cycle, looking for an optimum performance in terms of energy consumption. For the design of the isolated photovoltaic system, we used the “Tool for the dimensioning of isolated photovoltaic systems (DFSA)” software, developed by us in an earlier project, also, it has the database of solar radiation of the university campus. The station is in an open space of the University of the Quindío’s Campus, with the purpose to support the community visually informed about the levels UV. The UIV visualization and the suitable UV radiation exposure information for the body is done according to the World Health Organization (WHO). The visualization of the variables is done in real time by means of a virtual interface implemented in Python and the data stored in MySQL.
Objective— Develop an electronic system that allows the visualization of the IUV at the Universidad del Quindío and presents preventive information to the community using the IoT concept.
Methodology— For the methodology the work team stars with a theorical framework about the ultraviolet rays and ultraviolet radiation to implement caution measures needed to advise people. Then, with Top Down methodology, the project is divided in submodule that generates a better searching and settling of the materials and methods to use.
Results— Checking which is the better IUV estimation method between ROHM technique and Zhang and Huang’s technique, the tests show the last one gives better estimations. This allows the system brings good information about the ultraviolet radiation changes; besides it proves that the temperature and humidity changes are directly proportional to the UV radiation. Finally, implementing the Timer Off technique reduces the whole system energy consumption and the 4 hours of the system autonomy the team expected while using batteries energy, goes to 5 to 7 hours.
Conclusions— Building the ultraviolet measurement satiation energized by a photovoltaic system accomplishes the goal of people sensitizing about how dangerous the prolonged exposition of UV rays and the recommendations is they must follow to avoid these issues. On the other hand, system applies current methods about energy consumption like Timer off technique and renewable energy when using solar panel to store solar radiation energy, turning this system into an autonomous measurement system, in addition, it makes use of the IoT concept in the development of web platforms and the use of wireless communication systems.
Downloads
References
Organización mundial de la Salud, Índice UV Solar Mundial, Gnb. Ch.: OMS, 2003. Available: https://apps.who.int/iris/bitstream/handle/10665/42633/9243590073.pdf;jsessionid=C5215835DB8619F578549420E62F4282?sequence=1
H.O. Benavides, “Información Técnica sobre la Radiación Ultravioleta, el Índice UV y Pronóstico”, IDEAM–METEO/001-2010, IDEAM, Bo. Co. 2010. Available: http://documentacion.ideam.gov.co/openbiblio/bvirtual/022454/NotatecnicaIUVPaginaWEBfinal.pdf
C. Lema & D. Zuleta, “Solmáforo (Semáforo Solar): Modelo Ambiental De Alerta Por Exposición a La Radiación Solar En Quito”, Tesis grado, Dpto. Ing. Amb, UPS, UIO, Ec., Abr. 2015. Available: https://dspace.ups.edu.ec/bitstream/123456789/10091/6/UPS-ST001607.pdf
UPME-IDEAM, Atlas de Radiación Solar de Colombia. Bog. Co.: INC, 2005.
J. R. Hernández, “Implementación de un Sistema Automatizado de Adquisición de Datos Meteorológicos y Solarimétricos”, Tesis grado, UNISON, Son., Hmo., 1996.
C. A. Correa, G. A. Marulanda & A. F. Panesso, “Impacto de la penetración de la energía solar fotovoltaica en sistemas de distribución: estudio bajo supuestos del contexto colombiano”, Tecnura, vol. 20, no. 50, pp. 85–95, Sep. 2016. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a06
X. Blanco & P. Kajdic, “El Sol, Nuestra Estrella”, RDU, vol. 10, no. 10, pp. 1–17, Oct. 2009. Available: http://www.revista.unam.mx/vol.10/num10/art67/int67.htm
W. Passchier & B. Bosnjakovic, Human Exposure to Ultraviolet Radiation: Risks an Regulations, NY, USA: Elsevier Science Publishers, 1987.
M. Allaart, M. Van-weele, P. Fortuin & H. Kelder, “An empirical model to predict the UV-index based on solar zenith angles and total ozone,” Meteorol Appl, vol. 105, no. 1 , pp. 59–65, 2004. https://doi.org/10.1017/S1350482703001130
S. Everett Jones & G. P. Guy Jr, “Sun Safety Practices Among Schools in the United States,” JAMA Dermatology, vol. 153, no. 5 , pp. 391–398, Mar. 2017. https://doi.org/10.1001/jamadermatol.2016.6274
F. J. López, “El cuerpo humano ante los rayos solares”, La radiación solar: efectos en la salud y el medio ambiente, B. de la Morena(TIR.), Es.: UNIA, pp. 122–136, 2010.
P. Kiedron, S. Stierle & K. Lantz, “Instantaneous UV Index and Daily UV Dose Calculations”, NEUBrew Uvindex, NOAA/EPA Brewer Network, Wash, USA, Dic., 2007. Available: https://www.esrl.noaa.gov/gmd/grad/neubrew/docs/UVindex.pdf
D. Díaz Corcobado & G. Carmona Rubio, Instalaciones solares fotovoltaicas, Md., Es.: Mc Graw Hill Interamericana de España, 2010.
M. Alonso Abella, Sistemas fotovoltaicos. Md, Ep: CIEMAT, 2005.
Energía Solar, “Módulo fotovoltaico”, Solar-Energia.net, [Online , 2018. Available: https://solar-energia.net/definiciones/modulo-o-panel-fotovoltaico.html
C. J. Romero, “Análisis del funcionamiento de paneles fotovoltaicos y su utilización en las regiones de la costa y sierra del Ecuador. Caso de estudio: Biblioteca Pompeu Fabra de Mataró”, M.S. Thesis, Dept. Org. Emp., UPC, Bcn, Es., 2015.
K. C. Tan, H. S. Lim & Z. M. Jafri, “Study on solar ultraviolet erythemal dose distribution over Peninsular Malaysia using Ozone Monitoring Instrument,” EJRS, vol. 21, no 1, pp. 105–110, Apr. 2018. https://doi.org/10.1016/j.ejrs.2017.01.001
W. Gong, M. Zhang, L. Wang, B. Hu & Y. Ma, “Measurement and estimation of ultraviolet radiation in Pearl River Delta, China,” J Atmos Sol-Terr Phys, vol. 123, no. 123, pp. 63–70, Feb. 2015. https://doi.org/10.1016/j.jastp.2014.12.010
H. Liu, B. Hu, L. Zhang, X.J. Zhao, K.Z. Shang, Y.S. Wang & J. Wang, “Ultraviolet radiation over China: Spatial distribution and trends,” Renew Sust Energ Rev, vol.76, no. 76, pp. 1371–1383, Sep. 2017. https://doi.org/10.1016/j.rser.2017.03.102
S.A. Kalogirou, S. Pashiardis & A. Pashiardi, “Statistical analysis and inter-comparison of erythemal solar radiation for Athalassa and Larnaca, Cyprus,” Renewable Energy, vol. 111, no. 1, pp. 580–579, Oct. 2017. https://doi.org/10.1016/j.renene.2017.04.043
M. El-Nouby & E. A. Ahmed, “An assessment of the ratio of ultraviolet-B to broadband solar radiation under all cloud conditions at a subtropical location”, Adv in Space Res, vol. 57, no. 57, pp. 764–775, Feb. 2016. https://doi.org/10.1016/j.asr.2015.11.030
C. Tiba & S. da Silva, “Enhancement of UV Radiation by Cloud Effect in NE of Brazil”, Int J Photoenergy, pp. 1–9, 2017. https://doi.org/10.1155/2017/8107435
G. G. Palancar, L. E. Olcese, M. Achad, M. L. López & B. M. Toselli, “A long term study of the relations between erythemal UV-B irradiance, total ozone column, and aerosol optical depth at central Argentina”, J Quant Spectrosc Radiat Transf, vol. 198, No. 1, pp. 40–47, Sep. 2017. https://doi.org/10.1016/j.jqsrt.2017.05.002
República de Colombia. Consejo de Bogotá, “Por medio del cual se promueve la creación de una red de vigilancia del índice de radiación solar ultravioleta, en la ciudad de Bogotá D.C. y se adoptan otras disposiciones”, Proyecto acuerdo No. 075, 2016. Available: http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=65284
Ministerio de Ambiente y Desarrollo Sostenible. Solmáforos, “Minambiente,” Minambiente.gov.com, [Online , 2017. Available: www.minambiente.gov.co
Revista Ambiental Catorce 6, “Cali y sus 'solmáforos' para medir la radiación”, [Online , 2018. Available: https://www.catorce6.com/investigacion/12449-cali-y-sus-solmaforos-para-medir-la-radiacion
R.J. Schweers, “Metodologías de diseño de hardware”, [Online, 2002. Available: http://sedici.unlp.edu.ar/bitstream/handle/10915/3835/2_-_Metodolog%C3%ADas_de_dise%C3%B1o_de_hardware.pdf?sequence=4&isAllowed=y
S. L. Alazate-Plaza, A. F. Serna-Ruiz y E. J. Marín-García, “Herramienta para el dimensionamiento de un sistema fotovoltaico aislado”, Lámpsakos, no. 16, pp. 61–74, Dic. 2016. https://doi.org/10.21501/21454086.1936

Published
How to Cite
Issue
Section
License
Copyright (c) 2020 INGE CUC

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Published papers are the exclusive responsibility of their authors and do not necessary reflect the opinions of the editorial committee.
INGE CUC Journal respects the moral rights of its authors, whom must cede the editorial committee the patrimonial rights of the published material. In turn, the authors inform that the current work is unpublished and has not been previously published.
All articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.