Tactical Crop planning model under uncertainty

Authors

DOI:

https://doi.org/10.17981/ingecuc.16.2.2020.20

Keywords:

stochastic programming, crop planning, passion fruit, decision making, optimization under uncertainty

Abstract

Introduction- Currently, decision making is one of the most important processes in crop planning and the uncertainties experienced by fields in open field conditions. This is necessary to develop planning models that incorporate these uncertainties as presented in the next investigation.

Objective- To apply a tactical model for the optimization of the supply chain in the production of passion fruit for three producers in the municipality of Suaza, Huila considering three probable scenarios to support the planning decisions, to serve as a tool to support the making of decisions in crop planning.

Methodology- The chosen modeling is a stochastic bi-stage program where the decisions in the first stage are taken to satisfy the uncertain results of the second stage. The proposed model determines how many hectares each producer must plant to minimize costs considering yield, leaving the price as the source of uncertainty for the second stage. Finally, the expected utility is analyzed under different scenarios.

Results- The results of the model show that risk-sharing strategies based on cooperation between producers can achieve higher profits in different scenarios and meet market needs; in the pessimistic scenario a profit of $ 15,982,562.62 can be achieved.

Conclusions- Applying models under uncertainty allow us to obtain recommendations on planning processes to make decisions that conform to a stochastic approach compared to the results obtained without considering uncertainty, and in turn propose collaborative farm management strategies.The resulting model shows a starting point to establish more robust production plans that adjust to the needs of producers, considering the importance of variables and random parameters on planting decisions.

Downloads

Download data is not yet available.

References

J. M. Bru, R. Poler & F. Lario, “Modelo y Métodos para la Planificación de la Producción de la Cadena de Suministro bajo Incertidumbre: Una introducción al Estado del Arte,” presentado II Conf Ing Org, ADINGOR, Vigo, ES, 5-6 Sept. 2002. Disponible en http://adingor.es/congresos/web/articulo/detalle/a/1495

V. Borodin, J. Bourtembourg, F. Hnaien & N. Labadie, “Handling uncertainty in agricultural supply chain management: A state of the art,” Eur J Oper Res, vol. 254, no. 2, pp. 348–359, Oct. 2016. https://doi.org/10.1016/j.ejor.2016.03.057

J. R. Birge y F. Louveaux, Introduction to Stochastic Programming. NY, USA: Springer, 1997.

D. Bertsimas y S. Melvyn, “Robust discrete optimization and network flows,” Math Program, vol. 98, pp. 49–71, Sept. 2003. https://doi.org/10.1007/s10107-003-0396-4

O. Ahumada & J. R. Villalobos, “Application of planning models in the agri-food supply chain: A review,” Eur J Oper Res, vol. 196, no. 1, pp. 1–20, Jul. 2009. https://doi.org/10.1016/j.ejor.2008.02.014

N. V. Sahinidis, “Optimization under uncertainty: state-of-the-art and opportunities,” Comput Chem Eng, vol. 28, no. 6–7, pp. 971–983, Jun. 2004. https://doi.org/10.1016/j.compchemeng.2003.09.017

G. B. Dantzig, “Linear Programming under Uncertainty,” Manage Sci, vol. 1, no. 3, pp. 197–206, 1955. https://doi.org/10.1287/mnsc.1040.0261

O. Valenzuela, Models for Planning the Supply Chain of Agricultural Perishable Products. Tempe, USA: ProQuest LLC, 2008.

L. N. Ramírez, S. L. Meneses & J. I. Campos, Gestión de Operaciones en la cadena de alimentos. Bo, CO: Unilibre, 2018. https://doi.org/10.18041/978-958-5466-46-3

N. Shabani, T. Sowlati, M. Ouhimmou y M. Rönnqvist, “Tactical supply chain planning for a forest biomass power plant under supply uncertainty,” Energy, vol. 78, no. C, pp. 346–355, Dec. 2014. https://doi.org/10.1016/j.energy.2014.10.019

V. Albornoz y C. Canales, “Planificación de la Conservación y Explotación del Langostino Colorado usando un Modelo de Optimización Estocástica No-Lineal con Recurso,” CIT, vol. 13, no. 4, pp. 183–190, Ene. 2002. Disponible en https://www.citrevistas.cl/a1.htm

O. Ahumada, J. R. Villalobos & A. N. Mason, “Tactical planning of the production and distribution of fresh agricultural products under uncertainty,” Agric Syst, vol. 112, pp. 17–26, Oct. 2012. http://dx.doi.org/10.1016/j.agsy.2012.06.002

J. F. Shapiro, “Challenges of strategic supply chain planning and modeling,” Comput Chem Eng, vol. 28, no. 6–7, pp. 855–861, 2004. https://doi.org/10.1016/j.compchemeng.2003.09.013

A. Gupta & C. D. Maranas, “Managing demand uncertainty in supply chain planning,” Comput Chem Eng, vol. 27, no. 8-9, pp. 1219–1227, Sept. 2003. https://doi.org/10.1016/S0098-1354(03)00048-6

K. Harrison, D. Henley, H. Riley y J. Shaffer, Mejoramiento de los Sistemas de Comercialización de Alimentos en los Países en Desarrollo. SJ, CR: IICA, 1976. Disponible en https://repositorio.iica.int/handle/11324/14686

República de Colombia, Minagricultura, Apuesta Exportadora Agropecuaria 2006-2020. BO, CO: Min­agricultura. Disponible en https://repository.agrosavia.co/handle/20.500.12324/17951

A. Barragán, “Huila: Paraíso Frutícola. Programa de competitividad agropecuaria del Huila,” Cadena Frutícola, Neiva, CO, Informe técnico y de gestión, 2010. Disponible en https://www.huila.gov.co/

Gobernación del Huila, Evaluación Agropecuaria del Huila 2007. Secretaría Agricultura Minería, Neiva, Co, 2017. Disponible en https://www.huila.gov.co/loader.php?lServicio=Tools2&lTipo=descargas&lFuncion=descargar&idFile=31362

L. N. Ramírez y A. M. Otálvaro, “Evaluación de competencias de las regiones para el desarrollo de un clúter útil a la cadena de productiva de passifloras en Colombia,” Univ Emp, vol. 17, no. 28, pp. 69–85, 1. http://dx.doi.org/10.12804/rev.univ.empresa.28.2015.03

M. Parra, Acuerdo de Competitividad para la Cadena Productiva de Pasifloras en Colombia. Minagricultura: Neiva, CO, 2012. Recuperado de https://sioc.minagricultura.gov.co/Pasifloras/Normatividad/004%20-%20D.C.%20-%20Acuerdo%20de%20Competitividad%20Cadena%20Pasifloras.pdf

M. Parra, “Innovación en el Sistema de Producción de Maracuyá, caso de estudio: Suaza, Huila,” presentado al III Cong Latam I Cong Mund Pasifloras, CEPASS, Neiva, Co, 15-17 Mar. 2017. Disponible en http://cepass.org/

J. Coronado, J. P. García, J. Maheut & J. García, “Modelo de optimización estocástica para la planificación de cadenas de suministro para productos con ciclo de vida cortos,” presentado al 4 Int Conf Ind Eng Oper Manag, CIO, SS, ES, 8-10 Sept. 2010. Recuperado de http://adingor.es/congresos/web/uploads/cio/cio2010/PRODUCTION_PLANNING/1366-1375.pdf

O. Ahumada & J. R. Villalobos, “Operational model for planning the harvest and distribution of perishable agricultural products,” Int J Prod Econ, vol. 133, no. 2, pp. 677–687, Oct. 2011. https://doi.org/10.1016/j.ijpe.2011.05.015

W. E. Soto-Silva, E. Nadal-Roig, M. C. González-Araya & L. M. Pla-Aragones, “Operational research models applied to the fresh fruit supply chain,” Eur J Oper Res, vol. 251, no. 2, pp. 345–355, Jun. 2016. https://doi.org/10.1016/j.ejor.2015.08.046

J. Mateo, L. M. Pla, F. Solsona & A. Pagès, “A production planning model considering uncertain demand using two-stage stochastic programming in a fresh vegetable supply chain context,” Springerplus, vol. 5, pp. 1–16, Jun. 2016. https://doi.org/10.1186/s40064-016-2556-z

A. Megahed & M. Goetschalckx, “Tactical supply chain planning under uncertainty with an application in the wind turbines industry,” Comput Oper Res, vol. 100, pp. 287–300, Dec. 2018. https://doi.org/10.1016/j.cor.2017.12.015

J. Carvajal, W. Sarache & Y. Costa, “Planeación optima de cultivos de caña de azúcar bajo efectos de incertidumbre en los rendimientos y en la fecha de inicio del abastecimiento,” presentado al 9th Inter Conf Prod Res, Americas 2018, Bo, Co, 2018. Disponible en https://icpramericas2018.wixsite.com/icpr

L. N. Ramírez, N. Obregón & J. A. Cleves, “Understanding the effects of uncertainty in crop planning,” presented at 2016 Industrial and Systems Engineering Research Conference, ISERC, Anaheim, USA, 2016. Disponible en https://www.iise.org/Annual2/Details.aspx?id=10150

Corabastos. “Corporación de Abastos de Bogotá”. corabastos.com, 2019. https://www.corabastos.com.co

MinTic. “EVA”. datos.gov.co, 2015. https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Evaluaciones-Agropecuarias-Municipales-EVA/2pnw-mmge

Arena. (2019), SIMAN. https://www.clarcat.com/arena/

Published

2020-10-27

How to Cite

Ramírez, L. N., & Pardo Beltrán, O. L. (2020). Tactical Crop planning model under uncertainty. INGE CUC, 16(2), 253–266. https://doi.org/10.17981/ingecuc.16.2.2020.20