Kinematic estimation of the lower limb joints using the extended Kalman filter

Authors

DOI:

https://doi.org/10.17981/ingecuc.16.1.2020.19

Keywords:

extended Kalman filter, human gait, inertial measurement units, parametric estimation, kinematic parameters

Abstract

Introduction: This paper describes the use of the extended Kalman filter using inertial sensors (IMUS) in order to identify the kinematic parameters of the human gait at a low cost.

Objective: To asses an efficient method at a low cost to identify the kinematic parameters of the human gait.

Method: A mathematical model of the lower limb of the human body was obtained, including four inertial measurement units (IMU). Real data were measured and introduced to the model with the purpose to identify the kinematic parameters.  A VICON optical system was also used to compare the results obtained from the extended Kalman filter.

Results:  The kinematic parameters identified with the extended Kalman filter method were compared to those obtained with an expensive optical VICON system, producing similar results.

Conclusions: The use of the extended Kalman filter allows identifying easily the kinematic parameters of the human gait, to be used later in the evaluation of treatment protocols.

Downloads

Download data is not yet available.

References

A. Calasans, Diez datos sobre la discapacidad. Ginebra: OMS, 2013.

M. El-Gohary, L. Holmstrom, J. Huisinga, E. King, J. McNames & F. Horak, “Upper limb joint angle tracking with inertial sensors”, IEEE. Trans. Biomed. Eng., vol. 59, no. 9, pp. 2635–2641, Sept. 2012. https://doi.org/10.1109/IEMBS.2011.6091362

K. Sweeting & M. Mock, “Gait and posture-assessment in general practice”, Aust. Fam. Physician, vol. 36, no. 6, pp. 398–401, Jul. 2007. Available: https://www.racgp.org.au/afp/200706/200706sweeting.pdf

A, Fontes, T. Menezes, P. Fallavollita, L. Silva & V. Teichrieb, “Rehabilitation motion recognition based on the international biomechanical standards”, Expert. Syst. Appl., vol. 116, pp. 396–409, Feb. 2019. https://doi.org/10.1016/j.eswa.2018.09.026

A. Villa, E. Gutiérrez y J. Pérez, “Consideraciones para el análisis de la marcha humana, técnicas de videogrametría, electromiografía y dinamometría”, Rev. Ing. Biomed., vol. 2, no. 3, pp. 16–26, Jun. 2008. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/lil-773325

V. Bonnet, G. Daune, V. Joukov, R. Dumas, P. Fraisse, D. Kulic, A. Seilles, S. Andary & G. Venture, “A constrained extended kalman filter for dynamically consistent inverse kinematics and inertial parameters identification”, in 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, BioRob 2016, Singapore, SG, 26-29 Jun. 2016. https://doi.org/10.1109/BIOROB.2016.7523749

V. Bonnet, C. Mazza, P. Fraisse & A. Cappozzo, “A least-squares identification algorithm for estimating squat exercise mechanics using a single inertial measurement unit”, J. Biomech., vol. 45, no. 8, pp. 1472 –1477, May. 2012. https://doi.org/10.1016/j.jbiomech.2012.02.014

T. Seel, J. Raisch & T. Schauer, “Imu-based joint angle measurement for gait analysis”, Sensors, vol. 14, no. 4, pp. 6891–6909, Apr. 2014. https://doi.org/10.3390/s140406891

H. Vathsangam, A. Emken, D. Spruijt & G. Sukhatme, “Toward freeliving walking speed estimation using gaussian process-based regression with on-body accelerometers and gyroscopes”, in 4th International ICST Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2010, Munich, GE, Marc. 2010. https://doi.org/10.4108/ICST.PERVASIVEHEALTH2010.8786

W. Jiang & Z. Yin, “Combining passive visual cameras and active IMU sensors for persistent pedestrian tracking”, J. Vis. Commun. Image R., vol. 48, no. 5, pp. 419–431, Oct. 2017. https://doi.org/10.1016/j.jvcir.2017.03.015

M. Djuric, N. Jovicic, D. Popovic & A. Djordjevic, “Nonlinear optimization for drift removal in estimation of gait kinematics based on accelerometers”, J. Biomech., vol. 45, no. 16, pp. 2849–2854, Sept. 2012. Available: https://www.researchgate.net/publication/230869449_Nonlinear_optimization_for_drift_removal_in_estimation_of_gait_kinematics_based_on_accelerometers

D. Roetenberg, H. Luinge & P. Slycke, “Xsens mvn: full 6dof human motion tracking using miniature inertial sensors,” Tech. Rep., Xsens Motion Technologies, Enschede, Ni, Jan. 2009. Available: https://www.researchgate.net/publication/239920367_Xsens_MVN_Full_6DOF_human_motion_tracking_using_miniature_inertial_sensors

A. Guzik, M. Druzbicki, A. Wolan, G. Przysada & A. Kwolek, “The Wisconsin gait scale – The Minimal clinicaly important difference”, Gait Posture, vol. 68, pp. 453–457, Feb. 2019. https://doi.org/10.1016/j.gaitpost.2018.12.036

L. Benson, X. Clermont, E. Bosnjak & R. Ferber, “The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review”, Gait Posture, vol. 63, pp. 124–138, Jun. 2018. https://doi.org/10.1016/j.gaitpost.2018.04.047

C. Díaz, A. Torres, J. Ramírez, L. García & N. Álvarez, “Descripción de un dispositivo destinado al análisis de la marcha en dos dimensiones, CineMED”, Rev. EIA, vol. 5, pp. 85–92, Jun. 2006. Disponible en https://revistas.eia.edu.co/index.php/reveia/article/view/149/148

E. Camargo, Y. Garzón & V. Camacho, “Sistema portátil de captura de movimiento para el análisis cinemático de la marcha humana”, Rev. Tecnura, vol. 16, no. 34, pp. 67–83, Oct. 2012. https://doi.org/10.14483/udistrital.jour.tecnura.2012.4.a05

T. Weise, Global optimization algorithms: theory and application. Hefei, CHN: Self-Published, 2011.

G. Cooper, I. Sheret, L. McMillian, K. Siliverdis, N. Sha, D. Hodgins & D. Howard, “Inertial sensor-based knee flexion/extension angle estimation”, J. Biomech., vol. 42, no. 16, pp. 2678–2685, Dec. 2009. https://doi.org/10.1016/j.jbiomech.2009.08.004

V. Bonnet & G. Venture, “Fast determination of the planar body segment inertial parameters using affordable sensors”, IEEE T. Neur. Sys. Reh., vol. 23, no. 4, pp. 628–635, Jul. 2015. https://doi.org/10.1109/TNSRE.2015.2405087

J. Figueiredo, C. Santos & J. Moreno, “Automatic recognition of gait patterns in human motor disorders using machine learning: A review”, Med. Eng. Physics, vol. 53, pp. 1–12, Mar. 2018. https://doi.org/10.1016/j.medengphy.2017.12.006

F. Schültje, P. Beckerle, M. Grimmer, J. Wojtusch & S. Rinderknecht, “Comparison of trajectory generation methods for a human-robot interface based on motion tracking in the int2bot”, in Proc. 23rd IEEE Ro-man 2014, 23ISRHIC, Edinburgh, UK, 25-29 Aug. 2014. https://doi.org/10.1109/ROMAN.2014.6926336

M. El-Gohary & J. McNames, “Human joint angle estimation with inertial sensors and validation with a robot arm”, IEEE Trans. Biomed. Eng., vol. 62, no. 7, pp. 1759–1767, Jul. 2015. https://doi.org/10.1109/TBME.2015.2403368

C. Lightcap & S. Banks, “An extended Kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator”, IEEE T. Contr. Syst. T., vol. 18, no. 1, pp. 91–103, Jun. 2010. https://doi.org/10.1109/TCST.2009.2014959

J. Grosso & D. Tibaduiza, “Diseño y validación de un exoesqueleto maestro-esclavo para rehabilitación de piernas”, Tesis de grado, dpto IMEC, UNAB, B/manga, CO, 2008.

V. Ortiz, M. Nieto & E. Quintero, “Metodología para la estimación de parámetros en tiempo real mediante filtros de Kalman y mínimos cuadrados”, Iteckne, vol. 10, no. 1, pp. 37–44, Jul. 2013. https://doi.org/10.15332/iteckne.v10i1.178

V. Bravo, M. Arias & J. Cárdenas, “Análisis y aplicación del filtro de Kalman a una señal con ruido aleatorio”, Scientia Et Technica, vol. 18, no. 1, pp. 267–274, Abr. 2013.

J. Chen & W. Liao, “A leg exoskeleton utilizing a magnetorheological actuator”, in Proc. IEEE RoBio 2006, IEEE, Kunming, CN, 17-20 Dec. 2006. https://doi.org/10.1109/ROBIO.2006.340320

C. Prakash, R. Kumar, N. Mittal & G. Raj, “Vision based identification of joint coordinates for marker-less gait analysis”, Procedia Comput. Sci., vol. 132, pp. 68–75, Jan. 2018. https://doi.org/10.1016/j.procs.2018.05.060

M. Lafortune, P. Cavanagh, H. Sommer & A. Kalenak, “Three-dimensional kinematics of the human knee during walking”, J. Biomech., vol. 25, no. 4, pp. 347–357, Apr. 1992. https://doi.org/10.1016/0021-9290(92)90254-X

A. Cappozzo, F. Catani, U. Croce & A. Leardini, “Position and orientation in space of bones during movement: anatomical frame definition and determination”, Clin. Biomech., vol. 10, no. 4, pp. 171–178, Jun. 1995. https://doi.org/10.1016/0268-0033(95)91394-T

R. Davis, S. Ounpuu, D. Tyburski & J. Gage, “A gait analysis data collection and reduction technique”, Hum. Movement Sci., vol. 10, no. 5, pp. 575–587, Oct. 1991. https://doi.org/10.1016/0167-9457(91)90046-Z

E. Portilla, O. Avilés, P. Niño, R. Pina, M. Molina & E. Moya, “Análisis cinemático y diseño de un mecanismo de cuatro barras para falange proximal de dedo antropomórfico”, Cienc. Ing. Neogranad., vol. 20, no. 1, pp. 45–49, Jun. 2010. https://doi.org/10.18359/rcin.283

K. Quijano & D. Valencia, “Estimación de la cinemática de las articulaciones de miembro inferior a partir de un arreglo reducido de sensores”, Tesis de grado, dpto IAIA, Unicauca, Popayán, CO, 2018.

J. Osio, J. Salvatore, E. Kunysz, D. Montezanti, D, Alonso, V. Guarepi & D. Morales, “Análisis de eficiencia en arquitecturas multiprocesador para aplicaciones de transmisión y procesamiento de datos”, en WICC 2017, ITBA, Bs. As., AR, Abr. 2017, pp. 163–167.

S. Garrido, R. Muñoz, F. Madrid & M. Marín, “Automatic generation and detection of highly reliable fiducial markers under occlusion”, Pattern Recognit., vol. 47, no. 6, pp. 2280–2292, Jun. 2014. https://doi.org/10.1016/j.patcog.2014.01.005

A. Salazar, W. Castrillón & F. Prieto, “Herramienta de asistencia en el diagnóstico de la movilidad articular en 3D”, Rev Avances Sist. Inf., vol. 5, no. 1, pp. 55–64, May. 2008.

Published

2020-03-10

How to Cite

Vivas Albán, O. A., Valencia Chacón, D. C., Quijano Guzmán, K. J., & Bonett, V. D. (2020). Kinematic estimation of the lower limb joints using the extended Kalman filter. INGE CUC, 16(1), 252–266. https://doi.org/10.17981/ingecuc.16.1.2020.19