Scenario-Based Model for Aggregate Production Planning. Case Study in a Chemical Company

Authors

DOI:

https://doi.org/10.17981/ingecuc.17.2.2021.19

Keywords:

modelling, uncertainty, scenarios, planning

Abstract

The objective of this research is to design a tool to support decision-making processes in medium-term production planning through a model for aggregate production planning, when demand is a parameter with uncertainty adjusted to a company that produces and distributes chemical products for cleaning, located in the municipality of Morroa - Sucre. The development of a production plan involves the determination of parameters that often have a certain degree of vagueness, this leads the personnel in charge of making decisions to assume the management of this uncertainty. This planning technique usually involves a family of similar products, i.e., products with similarities in the production process, the skills required, the materials needed. In this study the proposed model was coded in the General Algebraic Modeling System (GAMS) software, obtaining a solution in acceptable computational times. The solution obtained represents total production costs of $ 365'495,633 in the planning horizon, generating a planning tool for the company under study with favorable computational times.

Downloads

Download data is not yet available.

References

E. Demirel, E. C. Özelkan & C. Lim, “Aggregate planning with Flexibility Requirements Profile,” Int J Prod Econ, vol. 202, pp. 45–58, 2018. https://doi.org/10.1016/j.ijpe.2018.05.001

T. De Kok & K. Inderfurth, “Nervousness in inventory management: comparison of basic control rules,” Eur J Oper Res, vol. 103, no. 1, pp. 55–82, 1997. https://doi.org/10.1016/S0377-2217(96)00255-X

N. Tuomikangas & R. Kaipia, “A coordination framework for sales and operations planning (S&OP): Synthesis from the literature,” Int J Prod Econ, vol. 154, pp. 243–262, 2014. https://doi.org/10.1016/j.ijpe.2014.04.026

H.-M. Cho & I.-J. Jeong, “A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops,” Comput Ind Eng, vol. 106, pp. 174–181, 2017. https://doi.org/10.1016/j.cie.2017.02.010

C.-C. Fang, M.-H. Lai & Y.-S. Huang, “Production planning of new and remanufacturing products in hybrid production systems,” Comput Ind Eng, vol. 108, pp. 88–99, 2017. https://doi.org/10.1016/j.cie.2017.04.015

S. A. Abass, M. A. Gomaa, G. A. Elsharawy & M. S. Elsaid, “Generalized production planning problem under interval uncertainty,” Egypt Informatics J, vol. 11, no. 1, pp. 27–31, 2010. https://doi.org/10.1016/j.eij.2010.06.004

A. Jamalnia, J.-B. Yang, D.-L. Xu, A. Feili & G. Jamali, “Evaluating the performance of aggregate production planning strategies under uncertainty in soft drink industry,” J Manuf Syst, vol. 50, pp. 146–162, 2019. https://doi.org/10.1016/j.jmsy.2018.12.009

S. A. Abass, M. A. Gomaa, G. A. Elsharawy & M. S. Elsaid, “Generalized production planning problem under interval uncertainty,” Egypt Informatics J, vol. 11, no. 1, pp. 27–31, 2010. https://doi.org/10.1016/j.eij.2010.06.004

S. P. Sethi, H. Yan, H. Zhang & Q. Zhang, “Optimal and hierarchical controls in dynamic stochastic manufacturing systems: A survey,” Manuf Serv Oper Manag, vol. 4, no. 2, pp. 133–170, 2002. https://doi.org/10.1287/msom.4.2.133.281

L. Jia & Y. Sheng, “Stability in distribution for uncertain delay differential equation,” Appl Math Comput, vol. 343, pp. 49–56, 2019. https://doi.org/10.1016/j.amc.2018.09.037

J. R. Galbraith. Designing organizations: An executive briefing on strategy, structure, and process. SF, CA, USA: Jossey-Bass, 1995.

É. Gutiérrez, Á. I. Cadena, J. Montoya & F. Palacios, “Metodología de optimización para la toma de decisiones en la red de suministro de biodiesel en Colombia,” Cuad Adm, vol. 24, no. 43, pp. 59–87, . Disponible en https://revistas.javeriana.edu.co/index.php/cuadernos_admon/article/view/2601

F. S. J. De Carvalho, “Programación estocástica. Aplicación a la gestión de activos y pasivos,” Tesis doctoral, UCM, MAD, ES, 2018. Disponible en https://eprints.ucm.es/id/eprint/46219/1/T39542.pdf

J. W. Escobar, “Rediseño de una red de distribución con variabilidad de demanda usando la metodología de escenarios,” Rev Fac Ing, vol. 21, no. 32, pp. 9–19, 2013. Disponible en https://revistas.uptc.edu.co/index.php/ingenieria/article/view/1439

F. C. Lario, A. Rodríguez, J. P. García & L. F. Escudero, “Análisis y definición de Escenarios en programación estocástica para la Gestión de la Cadena de Suministros, en el sector del automóvil.,” presentado alIV CIO, SEV, ES, ETSI, 2001. Recuperado de http://hdl.handle.net/11441/46654

P. Schütz, A. Tomasgard & S. Ahmed, “Supply chain design under uncertainty using sample average approximation and dual decomposition,” Eur J Oper Res, vol. 199, no. 2, pp. 409–419, 2009. https://doi.org/10.1016/j.ejor.2008.11.040

T. Santoso, S. Ahmed, M. Goetschalckx & A. Shapiro, “A stochastic programming approach for supply chain network design under uncertainty,” Eur J Oper Res, vol. 167, no. 1, pp. 96–115, 2005. https://doi.org/10.1016/j.ejor.2004.01.046

H. M. Bidhandi & R. M. Yusuff, “Integrated supply chain planning under uncertainty using an improved stochastic approach,” Appl Math Model, vol. 35, no. 6, pp. 2618–2630, 2011. https://doi.org/10.1016/j.apm.2010.11.042

J. Kim, Y. Lee & I. Moon, “Optimization of a hydrogen supply chain under demand uncertainty,” Int J Hydrogen Energy, vol. 33, no. 18, pp. 4715–4729, 2008. https://doi.org/10.1016/j.ijhydene.2008.06.007

M. D. Arango, C. Vergara & H. Gaviria, “Modelización difusa para la planificación agregada de la producción en ambientes de incertidumbre,” DYNA, vol. 77, no. 162, pp. 397–409, 2010. Disponible en https://revistas.unal.edu.co/index.php/dyna/article/view/15910

A. Ramos, A. Alonso-Ayuso & G. Pérez. Optimización bajo incertidumbre. MAD, ES: UPCO, 2011.

Published

2021-11-10

How to Cite

Mendoza, G. P., Vergara Rodríguez, C. J., Domínguez-Arrieta, O. E., & Domínguez Canchila, L. M. (2021). Scenario-Based Model for Aggregate Production Planning. Case Study in a Chemical Company. INGE CUC, 17(2). https://doi.org/10.17981/ingecuc.17.2.2021.19