A Harmony Search approach for the Manufacturing Cell Design Problem

Authors

DOI:

https://doi.org/10.17981/ingecuc.15.2.2019.15

Keywords:

harmony search, facility layout, cellular manufacturing, metaheuristic

Abstract

Introduction: Cellular Manufacturing (CM) is an application of group technology that consists of grouping components in part families and machines into cells, via the decomposition of a complex manufacturing system into small systems, which attend the operations of entire part families. In this work, we developed a linear programming model that integrates production costs with costs for transfers between cells. Besides, using an approach algorithm method called Harmony Search is solved the mathematical model.

Objective: Evaluate the performance of the alternative Harmony Search and its machine allocation strategies in a cellular manufacturing problem.

Method: The mathematical model consists in a linear programming structure in which there are binary variables to determine the assignment of the operations of products to different machines in diverse cells, and integer variables to count the requirements of machines and the number of transfers between cells. In order to validate the model, we use modified instances based on the literature review and set in GAMS software using the CPLEX solver, also, is developed a metaheuristic algorithm in MATLAB in order to give an approximate solution.

Results:  The proposed Harmony Search and its variants can provide highlighted results taking advantage of the exploitation approach of the search space.

Conclusions: The Harmony Search and its variants can provide outstanding solutions in considerably short times; nevertheless, it is necessary to implement strategies to explore the search space in order to avoid falling into local optima.

Downloads

Download data is not yet available.

Author Biographies

Edwin Alberto Garavito Hernández, Universidad Industrial de Santander, Bucaramanga, (Colombia)

Obtuvo su título de M.Sc. en Ingeniería Industrial de la Universidad de Puerto Rico Recinto Universitario Mayagüez en 2016. Ha estado vinculado a la Universidad Industrial de Santander como Profesor Tiempo Completo en el área de diseño de sistemas productivos y simulación discreta. Entre sus intereses de investigación están: optimización, métodos heurísticos, gestión de la producción, diseño de sistemas productivos, simulación, entre otros. https://orcid.org/0000-0002-0145-232X

Leonardo Hernán Talero Sarmiento, Universidad Industrial de Santander, Bucaramanga, (Colombia)

Obtuvo su título de M.Sc. en Ingeniería Industrial de la Universidad Industrial de Santander, Colombia en 2018. Ha estado vinculado a la Universidad Industrial de Santander como becario en investigación en el grupo OPALO. Sus intereses de investigación son gestión de la producción, finanzas, heurísticas y el análisis de modelos de causalidad en talento humano. https://orcid.org/0000-0002-4129-9163

Laura Yeraldín Escobar Rodríguez, Universidad Industrial de Santander, Bucaramanga, (Colombia)

Obtuvo su título en Ingeniería Industrial de la Universidad Industrial de Santander, Colombia en 2018. Está vinculada a la Universidad Industrial de Santander como becaria en investigación en el grupo OPALO. Sus intereses de investigación son Diseño de Sistemas Productivos, Gestión de la Producción, optimización y métodos heurísticos. https://orcid.org/0000-0003-3350-9113

References

R. Kumar, S. P. Singh and K. Lamba, “Sustainable Robust Layout using Big Data approach: A Key towards Industry 4.0,” J. Clean. Prod., vol. 204, 643–659, Sep. 2018. https://doi.org/10.1016/j.jclepro.2018.08.327

S. S. Heragu, “Group technology and cellular manufacturing,” IEEE Trans. Syst. Man. Cybern., vol. 24, no. 2, pp. 203–215, Feb. 1994. https://doi.org/10.1109/21.281420

A. I. Abduelmola and S. M. Taboun, “A simulated annealing algorithm for designing cellular manufacturing systems with productivity consideration,” Prod. Plan. Control, vol. 11, no. 6, pp. 589–597, Jan. 2000. https://doi.org/10.1080/095372800414151

N. L. Hyer and K. A. Brown, “The Discipline of real cells,” J. Oper. Manag., vol. 17, no. 5, pp. 557–574, Jul. 1999. https://doi.org/10.1016/S0272-6963(99)00003-0

J. Wang and C. Roze, “Formation of machine cells and part families: A modified p-median model and a comparative study,” Int. J. Prod. Res., vol. 35, no. 5, pp. 1259–1286, May. 1997. https://doi.org/10.1080/002075497195317

A. Kusiak and W. S. Chow, “Decomposition of manufacturing systems,” IEEE J. Robot. Autom., vol. 4, no. 5, pp. 457–471, Oct. 1988. https://doi.org/10.1109/56.20430

A. Mungwattana, “Design of cellular manufacturing systems for dynamic and uncertain production requirements with presence of routing flexibility,” Ph.D. dissertation, Fac. ISE., VPI, Blacksburg, Virginia, 2000.

N. Singh, “Design of cellular manufacturing systems: An invited review,” Eur. J. Oper. Res., vol. 69, no. 3, pp. 284–291, Sep. 1993. https://doi.org/10.1016/0377-2217(93)90016-G

Z. W. Geem, Ed., Music-inspired harmony search algorithm: theory and applications. Heidelberg, Germany: Springer, 2009. https://doi.org/10.1007/978-3-642-00185-7

Y. Li, X. Li and J. N. D. Gupta, “Expert Systems with Applications Solving the multi-objective flowline manufacturing cell scheduling problem by hybrid harmony search,” Expert Syst. Appl., vol. 42, no. 3, pp. 1409–1417, Feb. 2015. https://doi.org/10.1016/j.eswa.2014.09.007

K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai and C. S. Chong, “Pareto-based grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling,” Inf. Sci. (Ny)., vol. 289, pp. 76–90, Dec. 2014. https://doi.org/10.1016/j.ins.2014.07.039

K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai & C. S. Chong, “Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives,” J. Intell. Manuf., pp. 363–374, Apr. 2016. https://doi.org/10.1007/s10845-014-0869-8

K. Nekooei, M. M. Farsangi, H. Nezamabadi-pour and K. Y. Lee, “An Improved Multi-Objective Harmony Search for Optimal Placement of DGs in Distribution Systems,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 557–567, Mar. 2013. https://doi.org/10.1109/TSG.2012.2237420

J. R. King and V. Nakornchai, “Machine-component group formation in group technology: review and extension,” Int. J. Prod. Res., vol. 20, no. 2, pp. 117–133, Apr. 2007. https://doi.org/10.1080/00207548208947754

J. R. King, “Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm,” Int. J. Prod. Res., vol. 18, no. 2, pp. 213–232, Apr. 1980. https://doi.org/10.1080/00207548008919662

H. Seifoddini and B. Tjahjana, “Part-family formation for cellular manufacturing: A case study at Harnischfeger,” Int. J. Prod. Res., vol. 37, no. 14, pp. 3263–3273, Sep. 1999. https://doi.org/10.1080/002075499190275

C. Dimopoulus and N. Mort, “Evolving similarity coefficients for the solution of cellular manufacturing problems,” in Proc. Congr. Evol. Comput., CEC 2000, La Jolla, CA, USA, 16–19 Jul. 2000, pp. 617–624. https://doi.org/10.1109/CEC.2000.870355

J. McAuley, “Machine grouping for efficient production,” Prod. Eng., vol. 51, no. 2, pp. 53–57, Feb. 1972. https://doi.org/10.1049/tpe.1972.0006

H. Seifoddini and P. M. Wolfe, “Application of the Similarity Coefficient Method in Group Technology,” IIE Trans., vol. 18, no. 3, pp. 271–277, Sep. 1986. https://doi.org/10.1080/07408178608974704

G. Srinivasan and T. T. Narendran, “GRAFICS-a nonhierarchical clustering algorithm for group technology,” Int. J. Prod. Res., vol. 29, no. 3, pp. 463–478, Mar. 1991. https://doi.org/10.1080/00207549108930083

M. Chandrasekharan and R. Rajagopalan, “ZODIAC-an algorithm for concurrent formation of part-families and machine-cells,” Int. J. Prod. Res., vol. 25, no. 6, pp. 835–850, Jun. 1987. https://doi.org/10.1080/00207548708919880

M. Chandrasekharan and R. Rajagopalan, “An ideal seed non-hierarchical clustering algorithm for cellular manufacturing,” Int. J. Prod. Res., vol. 24, no. 2, pp. 451–463, Mar. 1986. https://doi.org/10.1080/00207548608919741

A. Kusiak, “The generalized group technology concept,” Int. J. Prod. Res., vol. 25, no. 4, pp. 561–569, Apr. 1987. https://doi.org/10.1080/00207548708919861

S. Nicoletti, G. Nicosia and A. Pacifici, “Group Technology with Flow Shop Cells,” in Theory and Practice of Control and Systems. Singapur: World Scientific Publishing, 1999, pp. 800–804. https://doi.org/10.1142/9789814447317_0133

Z. Y. Lim, S. G. Ponnambalam and K. Izui, “Multi-objective hybrid algorithms for layout optimization in multi-robot cellular manufacturing systems,” Knowledge-Based Syst., vol. 120, pp. 87–98, Mar. 2017. https://doi.org/10.1016/j.knosys.2016.12.026

M. Diaby and A. L. Nsakanda, “Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs,” J. Oper. Res. Soc., vol. 57, no. 9, pp. 1100–1112, Sep. 2006. https://doi.org/10.1057/palgrave.jors.2602072

H. Djellab and M. Gourgand, “A new heuristic procedure for the single-row facility layout problem,” Int. J. Comput. Integr. Manuf., vol. 14, no. 3, pp. 270–280, Jan. 2001. https://doi.org/10.1080/09511920010020721

M. Z. Allahyari and A. Azab, “A Novel Bi-level Continuous Formulation for the Cellular Manufacturing System Facility Layout Problem,” Procedia CIRP, vol. 33, pp. 87–92, Dec. 2015. https://doi.org/10.1016/j.procir.2015.06.017

S. P. Darla, C. D. Naiju, P. V. Sagar and B. Linkhit, “Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm,” Res. J. Appl. Sci. Eng. Technol., vol 7, no. 1, pp. 165–168, Jan. 2014. https://doi.org/10.19026/rjaset.7.235

M. Aghajani, A. Keramati, R. T. Moghadam and S. S. Mirjavadi, “A mathematical programming model for cellular manufacturing system controlled by kanban with rework consideration,” Int. J. Adv. Manuf. Technol., vol. 82, pp. 1377–1394, Mar. 2016. https://doi.org/10.1007/s00170-015-7635-8

Y. B. Sahin and S. Alpay, “A metaheuristic approach for a cubic cell formation problem,” Expert Syst. Appl., vol. 65, pp. 40–51, Dec. 2016. https://doi.org/10.1016/j.eswa.2016.08.034

S. Shahdi-Pashaki, E. Teymourian and R. Tavakkoli-Moghaddam, “New approach based on group technology for the consolidation problem in cloud computing-mathematical model and genetic algorithm,” Comput. Appl. Math., vol. 37, no. 1, pp. 693–718, Jul. 2016. https://doi.org/10.1007/s40314-016-0362-4

R. Maleki, S. Ketabi and F. M. Rafiei, “Grouping both machines and parts in cellular technology by Genetic Algorithm,” J. Ind. Prod. Eng., vol. 35, no. 2, pp. 91–101, Feb. 2018. https://doi.org/10.1080/21681015.2017.1411402

H. Feng, T. Xia, W. Da, L. Xi and E. Pan, “Concurrent design of cell formation and scheduling with consideration of duplicate machines and alternative process routings,” J. Intell. Manuf., vol. 30, no. 1, pp. 275–289, Jan. 2019. https://doi.org/10.1007/s10845-016-1245-7

V. Jayakumar and J. Raju, “A Simulated Annealing Algorithm for Machine Cell Formation Under Uncertain Production Requirements,” AJSE, vol. 39, pp. 7345–7354, Aug. 2014. https://doi.org/10.1007/s13369-014-1306-1

C. Liu and J. Wang, “Cell formation and task scheduling considering multi-functional resource and part movement using hybrid simulated annealing,” Int. J. Comput. Intell. Syst., vol. 9, no. 4, pp. 765–777, Aug. 2016. https://doi.org/10.1080/18756891.2016.1204123

F. Shafigh, F. M. Defersha and S. Eid, “A linear programming embedded simulated annealing in the design of distributed layout with production planning and systems reconfiguration,” Int. J. Adv. Manuf. Technol., vol. 88, pp. 1119–1140, May. 2016. https://doi.org/10.1007/s00170-016-8813-z

A. Iqbal and K. A. Al-Ghamdi, “Energy-efficient cellular manufacturing system: Eco-friendly revamping of machine shop configuration,” Energy, vol. 163, pp. 863–872, Nov. 2018. https://doi.org/10.1016/j.energy.2018.08.168

Y. Gholipour-Kanani, I. R. Tavakkoli-Moghaddam and I. A. Khorrami, “Solving a multi-criteria group scheduling problem for a cellular manufacturing system by scatter search,” JCIIE, vol. 28, no. 3, pp. 192–205, Feb. 2011. https://doi.org/10.1080/10170669.2010.549663

M. S. Jabal-Ameli and M. Moshref-Javadi, “Concurrent cell formation and layout design using scatter search,” Int. J. Adv. Manuf. Technol., vol. 71, pp. 1–22, Mar. 2014. https://doi.org/10.1007/s00170-013-5342-x

A. S. Amiri and R. Ghodsi, “A variable neighborhood search method for an integrated cellular manufacturing systems with production planning and system reconfiguration,” in 4th Int. Conf. Math. Model. Comput. Simul., AMS2010, Bornea, Malaysia, 26-28 May. 2010, pp. 181–186.

F. Jolai, M. Taghipour and B. Javadi, “A variable neighborhood binary particle swarm algorithm for cell layout problem,” Int. J. Adv. Manuf. Technol., vol. 55, no. 1-4, pp. 327–339, Jul. 2011. https://doi.org/10.1007/s00170-010-3039-y

S.-H. Chung, T.-H. Wu and Ch.-Ch. Chang, “An efficient tabu search algorithm to the cell formation problem with alternative routings and machine reliability considerations,” Comput. Ind. Eng., vol. 60, no. 1, pp. 7–15, Feb. 2011. https://doi.org/10.1016/j.cie.2010.08.016

J. J. Du, G. X. Wang, Y. Yan and Q. Sang, “Tabu Search-based Formation of Reconfigurable Manufacturing Cells,” Appl. Mech. an Mater., vol. 397-400, no. 1, pp. 34–41, Sept. 2013. https://doi.org/10.4028/www.scientific.net/AMM.397-400.34

F. Sarayloo and R. Tavakkoli-Moghaddam, “Multi Objective Particle Swarm Optimization for a Dynamic Cell Formation Problem,” in World Congr. Eng. vol. III, WCE 2010, London, UK, Jun. 30 - Jul. 2, 2010.

A. Azadeh, S. Pashapour and S. A. Zadeh, “Designing a cellular manufacturing system considering decision style, skill and job security by NSGA-II and response surface methodology,” Int. J. Prod. Res., vol. 54, no. 22, pp. 6825–6847, May. 2016. https://doi.org/10.1080/00207543.2016.1178407

K. S. Lee and Z. W. Geem, “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice,” Comput. Methods Appl. Mech. Eng., vol. 194, no. 36-38, pp. 3902–3933, Sep. 2005. https://doi.org/10.1016/j.cma.2004.09.007

J. Arkat, M. H. Farahani and F. Ahmadizar, “Multi-objective genetic algorithm for cell formation problem considering cellular layout and operations scheduling,” Int. J. Comput. Integr. Manuf., vol. 25, no. 7, pp. 625–635, Jul. 2012. https://doi.org/10.1080/0951192X.2012.665182

M. Solimanpur, P. Vrat and R. Shankar, “Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing,” Eur. J. Oper. Res., vol. 157, no. 3, pp. 592–606, Sep. 2004. https://doi.org/10.1016/S0377-2217(03)00248-0

A. J. Vakharia and Y.-L. Chang, “Cell formation in group technology: A combinatorial search approach,” Int. J. Prod. Res., vol. 35, no. 7, pp. 2025–2044, Jul. 1997. https://doi.org/10.1080/002075497195056

B. P. Ahmed, R. Tavakkoli-Moghaddam and N. Safaei, “A comparison of heuristic methods for solving a cellular manufacturing model in a dynamic environment,” UOW, Wolv., UK, WP007/04, 2004.

F. S. Hillier and G. Lieberman, Introducción a la Investigación de Operaciones. 9 ed. México, D.F.: McGraw-Hill, 1997.

Z. Yang, “Analysis and Design of Cellular Manufacturing Systems: Machine-Part Cell Formation and Operation Allocation,” Ph.D. dissertation, CWRU, Cleveland, Ohio, USA, 1995.

D. M. Himmelblau, Applied Nonlinear Programming, 1st ed. NY, USA: McGraw-Hill, 1972.

Published

2019-12-06

How to Cite

Garavito Hernández, E. A., Talero Sarmiento, L. H., & Escobar Rodríguez, L. Y. (2019). A Harmony Search approach for the Manufacturing Cell Design Problem. INGE CUC, 15(2), 155–167. https://doi.org/10.17981/ingecuc.15.2.2019.15