Evaluation of the use of lignocellulosic fibers for the reinforcement of rigid polyurethane foams

Authors

DOI:

https://doi.org/10.17981/ingecuc.16.1.2020.08

Keywords:

rigid polyurethane foam, biocomposite, ligno­cellulosic, rice husk, mango peel, microcrystalline cellulose

Abstract

Introduction: Oil reserves are non-renewable resources, which can be replaced by biomass, from agroindustrial waste such as lignocellulosic fibers, allowing the partial replacement of petroleum derivatives.

Objective: This article aims to evaluate the use of lignocellulosic fibers for the reinforcement of rigid polyurethane foams.

Methodology: A pretreatment of the lignocellulosic material, such as mango husks, rice husk and cellulose microcrystals was carried out, then the cellulose and lignin content was determined, and then the content of the hydroxyl group (OH) present in the samples was determined. fibers and the synthesis of polyurethane foams, including lignocellulosic material by 5%, 10% and 15%. Finally, the foams are characterized with bulk density, water absorption, tensile strength and FTIR spectroscopy.

Results: The rice husk presented the best result with an OH replacement of 15%, density of 33 kg/m3 and resistance to tension 152.92 kPa. For the absorption of water, the mango peels reached a 277% increase in mass, for 15% OH.

Conclusions: The replacement of lignocellulosic fibers, such as mango husks and rice husks to reinforce rigid polyurethane foams, are an opportunity to use renewable resources with greater added value and industrial applications. Foams reinforced with 15% rice husks are the ones that have the best results and in terms of bulk density a maximum value of 33 kg/m3 was obtained, when compared with the samples of mango peel and cellulose microcrystals. For tensile strength, it records a value of 152.92 kPa, with an increase of 79% with respect to the reference foam. Thus these foams reinforced with rice husk can be used as a material with resistance to mechanical stresses and it is recommended to evaluate their use as a thermal insulator. Of the fibers evaluated, the mango peel is the best option for a foam for horticultural use, since it obtained a water absorption capacity of 277.30% corresponding to the sample with a substitution percentage of 15%.

Downloads

Download data is not yet available.

References

M. Lopretti and A. Gandini, “Nuevos materiales poliméricos derivados de fuentes renovables,” INNOTEC , No 7, pp. 59–63, Ene, 2013. Available from https://ojs.latu.org.uy/index.php/INNOTEC/article/view/200

M. Porras, “Evaluación de la incorporación de celulosa de bagazo de caña en la síntesis de espumas de poliuretano,” Tesis grado, Dept. Ing. Qui., UPB, Medellín, CO, 2013.

J. Ocampo, “Criterios de formulación de espumas flexibles de poliuretano MDI basados en la evaluación cualitativa de propiedades finales realizadas a nivel laboratorio,” Tesis magistral, Dept. Ing. Qui., UNAL, Bogotá D.C., CO, 2012.

A. Singh, D. Rathore, S. Sevda, I. Abu-Reesh and K. Vanbroekhoven, “Biohydrogen production from lignocellulosic biomass: Technology and Sustainability,” Energies, vol 8, no. 11, pp. 13062–13080, Nov. 2015. https://doi.org/10.3390/en81112357

J. Vargas, P. Alvarado, J. Vega-Baudrit y M. Porras-Gómez, “Caracterización del subproducto cascarillas de arroz en búsqueda de posibles aplicaciones como materia prima en procesos,” Rev. Cient. Fac. Cienc. Quím. Far., vol 23, no. 1, pp. 86–101, Jan. 2013.

M. Sumalia, B. Ugheoke, L. Timon and T. Oloyede, “A preliminary mechanical characterization of polyurethane filled with ignocellulosic material,” LJS, vol. 1, no. 9, pp. 159–166, Dec. 2006. Available from http://ljs.academicdirect.org/A09/get_htm.php?htm=159_166

M. Trujillo, “Desarrollo de un material compuesto de fibras naturales entrecruzadas con poliuretano,” Tesis magistral, Universidad de Guadalajara, Jalisco, Guadalajara, MX, 2007.

H. D. Rozman, Y. S. Yeo, G. S. Tay and A. Abubakar, “The mechanical and physical properties of polyurethane composites based on rice husk and polyethylene glycol,” Polym. Test., vol. 22, no. 6, pp. 617–623, Sep. 2003. https://doi.org/10.1016/S0142-9418(02)00165-4

G. Padrón-Gamboa, E. M. Arias-Marín, J. Romero-García, A. Benavides-Mendoza, J. Zamora-Rodríguez and S. P. García-Rodríguez, “Efecto de la cáscara de cacao en la obtención de espumas de poliuretano para uso hortícola,” Rev. Soc. Quím. Méx, vol. 48, no. 2, pp. 156–164, Abr. 2004.

A. A. Abdel, M. Nassar, A. Emam and M. Sultan, “Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol,” Mater Chem Phys, vol. 129, no. 1-2, pp. 301–307, Sep. 2011. https://doi.org/10.1016/j.matchemphys.2011.04.008

G. Huang and P. Wang, “Effects of preparation conditions on properties of rigid polyurethane foam composites based on liquefied bagasse and jute fibre,” Polym. Test, vol. 60, pp. 266–273, Jul. 2017. https://doi.org/10.1016/j.polymertesting.2017.04.006

T. Heinze, J. Rivera-Armenta and A. Mendoza-Martínez, “New polyurethane foams modified with cellulose derivatives,” Eur. Polym. J., vol. 40, no. 12, pp. 2803–2812, 2004. https://doi.org/10.1016/j.eurpolymj.2004.07.015

C. Defonseka, Practical Guide to flexible polyuretane foams, Akron, USA: Smithers Rapra Technology, 2013.

K. Ashida, Polyurethane and related foams - Chemistry and Tachnology, Boca Raton, USA: CRC, 2006. https://doi.org/10.1201/9780203505991

M. Quintero, R. Gómez and A. Boyacá, “Los polímeros de poliuretano y la industria colombiana: una oportunidad para el aceite de palma,” PALMAS, vol. 28, no. 2, pp. 35–42, Ene, 2007. Available from https://publicaciones.fedepalma.org/index.php/palmas/article/view/1288

A. Proaño, O. Bonilla and M. Aldás, “Desarrollo de un material compuesto de matriz de poliuretano rígido reforzado con fibra de raquis de palma africana,” Revista politécnica, vol. 36, no. 2, pp. 1–7, Oct. 2015. Available from https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/622

L. Serna and C. Torres, “Potencial agroindustrial de cáscaras de mango (Mangifera indica) variedades Keitt y Tommy Atkins,” Acta Agron, vol 64, no 2, pp. 110–115, Abr. 2014. https://doi.org/10.15446/acag.v64n2.43579

M. Szycher, Handbook of polyurethanes, Boca Raton, USA: CRC Press, 2012. https://doi.org/10.1201/b12343

M. E. Porras, C. P. Muñoz, A. M. Gil and G. C. Quintana, “Obtención de espumas de poliuretano con materiales lignocelulósicos,” Invest. Aplic., vol 6, no. 2, pp. 93–102, Dic. 2012.

W.F. García y L. M. Velásquez, “Evaluación del uso de fibras lignocelulósicas para el reforzamiento de espumas de poliuretano a nivel laboratorio,” Proyecto grado, Dept. Ing. Qui., UAmerica, Bogotá D.C., CO, 2018, Disponible en https://repository.uamerica.edu.co/bitstream/20.500.11839/6714/1/6122913-2018-1-IQ.pdf

Published

2020-01-28

How to Cite

Malagón Micán, M. L., Velásquez-Baracaldo, L. M., & García-Camacho, W. F. (2020). Evaluation of the use of lignocellulosic fibers for the reinforcement of rigid polyurethane foams. INGE CUC, 16(1), 116–128. https://doi.org/10.17981/ingecuc.16.1.2020.08