Design and construction of an electromechanical slider for the kinematic study of linear motion blurred images

Authors

DOI:

https://doi.org/10.17981/ingecuc.16.1.2020.06

Keywords:

slider, electronic machines, metrology, kinematics, prototype

Abstract

Introduction− This paper introduces the design and the construction of an electromechanical slider that allows obtaining the instantaneous speed and acceleration of a platform that holds a scientific camera to take photos for the study motion-blurred images. The mechanical and electrical design requirements are given based on the conditions of presentation of the phenomenon. The system was calibrated concerning a standard instrument for the estimation of the uncertainty and error.

Objective− In this paper, the design, construction and calibration of an electromechanical system for the study of images with uniform motion blur is presented.

Methodology− The development of the system is split into the following steps: The design and construction of an aluminum electromechanical slider built with a mobile platform that moves at constant speed; the calibration of the speed of the mobile platform using the Guide to Estimate Uncertainty in the Measurement (GUM); and the design and construction of the electromechanical aluminum slider mounted with a mobile platform at constant acceleration and the calibration of the mobile platform for the acceleration applying the Guide for Estimation of Measurement Uncertainty (GUM).

Results− Maximum uncertainties of were obtained for speed and for acceleration of the system.

Conclusions− The developed system corresponds to an electromechanical system that allows to move a cart along a pair of parallel bars, of low uncertainty with the possibility of measuring instantaneous speed and acceleration for the study of motion blurred images and teaching of motion physics.

Downloads

Download data is not yet available.

References

J. Cortés-Osorio, C. López-Robayo, and N. Hernández_Betancourt, “Evaluation and comparison of techniques for reconstructing the point spread function of images blurred by uniform linear motion”, TecnoL., vol. 21, no. 42, pp. 211–229, May. 2018. https://doi.org/10.22430/22565337.789

A. Klyuvak, O. Kliuva and R. Skrynkovskyy, “Partial Motion Blur Removal,” in IEEE Second International Conference, Data Stream Mining & Processing (DSMP), Lviv, Ukraine, Oct. 21-25, 2018, pp. 483–487. https://doi.org/10.1109/DSMP.2018.8478595

A. Zhang, Y. Zhu, J. Sun, M. Wang and Y. Zhang, “Parametric model for image blur kernel estimation,” 2018 International Conference, Orange Technologies (ICOT), Nusa Dua, BALI, Indonesia, Oct. 23-26, 2018, pp. 1–5. https://doi.org/10.1109/ICOT.2018.8705790

H. Lin and K. Li, “Motion blur removal and its application to vehicle speed detection,” 2004 International Conference on Image Processing, ICIP ‘04, Singapore, Singapore, Oct. 24-27, 2004, pp. 3407–3410. https://doi.org/10.1109/ICIP.2004.1421846

H. Lin and K. Li, “Vehicle speed estimation from single still images based on motion blur analysis,” in IAPR Conference on Machine Vision Applications, IAPR MVA 2005, Tsukuba Science City, Japan, May. 16-18, 2005, pp. 128–131.

J. Mohammadi, R. Akbari and M. K. Ba haghighat, “Vehicle speed estimation based on the image motion blur using RADON transform,” in 2nd International Conference on Signal Processing Systems, ICSPS 2010, Dalian, China, Jul. 5-7 2010, pp. V1-243–V1-247. https://doi.org/10.1109/ICSPS.2010.5555577

R. Jiménez, F. Espinosa and D. Amaya, “Control de Movimiento de un Robot Humanoide por medio de Visión de Máquina y Réplica de Movimientos Humanos”, INGE CUC, vol. 9, no. 2, pp. 44–51, Dic. 2013. Available from https://revistascientificas.cuc.edu.co/ingecuc/article/view/5

P. Contreras, C. Peña and C. Riaño, “Módulo Robótico para la Clasificación de Lulos (Solanum Quitoense) Implementando Visión Artificial”, INGE CUC, vol. 10, no. 1, pp. 51–62, Jul. 2014. https://revistascientificas.cuc.edu.co/ingecuc/article/view/343

L. Gallo, M. Guerrero, J. Vásquez and M. Alonso, “Diseño de un Prototipo Electromecánico para la Emulación de los Movimientos de un Brazo humano”, INGE CUC, vol. 12, no. 2, pp. 17–25, Ago. 2016. Available from https://doi.org/10.17981/ingecuc.12.2.2016.02

Y. Londoño, J. A. Cortés and M. E. Fernández, “Diseño, construcción e implementación de sistema de adquisición y análisis de datos para la enseñanza del movimiento rectilíneo en el laboratorio”, Momento, no. 55, pp. 57–73, Dec. 2017. https://doi.org/10.15446/mo.n55.66146

“Revolve: Motorized Slider”, Resolve, Seattle, WA, USA. [Online . https://www.revolvecamera.com/products/ram-motorized-dolly-slider-bundle (accesed 28/08/2019).

“Rhino Slider EVO”, Rhino Camera Gear, Seattle, WA, USA. [Online . https://rhinocameragear.com/pages/new-to-rhino-learn-the-system (accesed 28/08/2019).

J. S. Pérez and G. Rodriguez-Zurita: “Image restoration of blurring due to rectilinear motion: constant velocity and constant acceleration”, Revista mexicana de física, vol. 51, no. 4, pp. 398–406, May. 2005. Available from https://rmf.smf.mx/page/rmf-e_anteriores?volume=51

S. Schuon and K. Diepold, “Comparison of motion de-blur algorithms and real-world deployment”, Acta Astronautica, vol. 64, no. 11–12, pp. 1050–1065, Jun. 2009. https://doi.org/10.1016/j.actaastro.2009.01.012

Y. Ding, S. McCloskey and J. Yu, “Analysis of motion blur with a flutter shutter camera for non-linear motion”, in European Conference on Computer Vision, ECCV 2010, Heraklion, Crete, Greece, pp. 15–30, Sep. 5-11, 2010. https://doi.org/10.1007/978-3-642-15549-9_2

J. A. Dwicahya, N. Ramadijanti and A. Basuki, “Moving Object Velocity Detection Based on Motion Blur on Photos Using Gray Level,” International Electronics Symposium on Knowledge Creation and Intelligent Computing, IES-KCIC 2018, Bali, Indonesia, Oct. 29-30, 2018, pp. 19–198. https://doi.org/10.1109/KCIC.2018.8628598

J. S. Beggs. Kinematics. Boca Ratón, Fl., USA: CRC Press, 1983.

W. A. Schmid and R. J. Lazos, “Guía para estimar la incertidumbre de la medición”, CENAM, El Marqués, Qro, MX, Rev. 1, 2000. [Online . Available: http://depa.fquim.unam.mx/amyd/archivero/EstimaciondelaIncertidumbre_32954.pdf

J. A. Cortes-Osorio, “Evaluación y Comparación de Técnicas de Restauración de la Función de Punto de Dispersión para la Estimación de la Velocidad de un Objeto,” Tesis pregado, Dept. Fís., UTP, Pereira, Risaralda, Colombia, 2017.

J. A. Cortés-Osorio, J. B. Gómez-Mendoza and J. C. Riaño-Rojas, “Velocity Estimation From a Single Linear Motion Blurred Image Using Discrete Cosine Transform,” IEEE Trans. Instrum. Meas., vol. 68, no. 10, pp. 1–13, Dec. 2018. https://doi.org/10.1109/TIM.2018.2882261

Published

2020-01-28

How to Cite

Cortés Osorio, J. A., Muñoz Acosta, D. A., & Lopez Robayo, C. D. (2020). Design and construction of an electromechanical slider for the kinematic study of linear motion blurred images. INGE CUC, 16(1), 80–94. https://doi.org/10.17981/ingecuc.16.1.2020.06