Implementation of the VNS-DEEPSO algorithm for the energy dispatch in smart distributed grid

Authors

DOI:

https://doi.org/10.17981/ingecuc.15.1.2019.13

Keywords:

heuristic algorithms, renewable energy, optimization, intelligent network, electric vehicles

Abstract

Introduction: Traditional electric networks are migrating to new configurations of intelligent networks, which bring operational and planning challenges. In order to advance in these challenges, an optimization problem is proposed to solve in the programming of intelligent network elements.

Objective: The optimization problem consists of managing the energy dispatch of an intelligent network to optimize the available resources, considering the uncertainty of renewable energies, planned trips of electric vehicles, cargo forecast and market prices.

Methodology: It was proposed to use an assembly between two heuristic methods. The VNS algorithm (Variable Neighborhood Search) and the DEEPSO (Differential Evolutionary Particle Swarm).

Results: The value obtained by the VNS-DEEPSO algorithm was 18.21, being 7 % better than the second algorithm classified in the competition.

Conclusions: The VNS-DEEPSO algorithm was the winner among 9 metaheuristic algorithms that solved the problem. This problem has a greater increase in difficulty due to the uncertainty generated by weather conditions, load forecast, planned EV´s trips, and market prices. According to the results, the VNS-DEEPSO algorithm proved to be the most efficient in minimizing operational costs and maximizing the revenues of the intelligent network.

Downloads

Download data is not yet available.

Author Biographies

Pedro Julián García-Guarín, Universidad Nacional de Colombia. Bogotá, (Colombia)

Pedro Julián García MSc. en Ingeniería Electromecánica de la Universidad Pedagógica y Tecnológica de Colombia (2012); Especialista en Automatización Industrial de la Universidad Francisco de Paula Santander de Ocaña (2018); MSc. en Ingeniería Mecánica en la Universidad Nacional de Colombia (2016); PhD (c). en Ingeniería Eléctrica en la Universidad Nacional de Colombia; profesor ocasional de la UNAL y la UFPSO, ingeniero gestor de eficiencia energética y gestor Tecnoparque SENA nodo Ocaña. ORCID: http://orcid.org/0000-0002-8042-1299

Julián Cantor-López, Universidad Nacional de Colombia. Bogotá, (Colombia)

Julián Cantor es Ingeniero Electricista de la Universidad Nacional de Colombia, sede Bogotá. Actualmente realiza la evaluación técnica y financiera de proyectos de expansión de red eléctrica y de gas en la Unidad de Planeación Minero-Energética – UPME. http://orcid.org/0000-0002-5519-950X

Camilo Cortés-Guerrero, Universidad Nacional de Colombia. Bogotá, (Colombia)

Camilo Cortés Ph.D. Ingeniero Electricista de la Universidad Nacional de Colombia (2000) y Doctor en Ingeniería Eléctrica de la Universidad Nacional de San Juan, Argentina (2005), con beca del Servicio Alemán de Intercambio Académico DAAD. Estudiante doctoral visitante de la Universidad de Ciencias Aplicadas de Giessen-Friedberg y el NLÖ de Alemania (2002). Visitante posdoctoral de la Universidad Católica de Lovaina KUL, Bélgica (2006). Profesor de la Universidad de la Salle de 2005 a 2007. Posdoctorado en el Illinois Institute of Technology, USA (2015-2016). Profesor Asociado de la Universidad Nacional de Colombia desde el año 2008, y Embajador Científico del DAAD desde el año 2017. ORCID: http://orcid.org/0000-0002-0986-3975

María Alejandra Guzmán-Pardo, Universidad Nacional de Colombia. Bogotá, (Colombia)

María Alejandra Guzmán es ingeniera mecánica de la Universidad Nacional de Colombia. Posteriormente obtuvo su título de maestría en Automatización Industrial en la Universidad Nacional de Colombia y el título de Doctora en Ingeniería Mecánica en la Universidad de Sao Paulo, Brasil. Es profesora del Departamento de Ingeniería Mecánica y Mecatrónica de la Universidad Nacional de Colombia desde hace 21 años. Su área de interés es la optimización mono y multiobjetivo bio-inspirada. http://orcid.org/0000-0002-9579-7344 

References

M. Tuballa and M. Abundo, “A review of the development of Smart Grid technologies,” Renewable and Sustainable Energy Reviews, vol. 59, no. 1, pp. 710–725, Jun. 2016. Doi: https://doi.org/10.1016/j.rser.2016.01.011

F. Lezama, J. Soares, Z. Bale, J. Rueda, S. Rivera and I. Elrich, “2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and results,” Swarm and Evolutionary Computation, vol. 44, no. 1, pp. 420–427, Feb. 2019. Doi: https://doi.org/10.1016/j.swevo.2018.05.005

O. Dzobo, A. M. Shehata and C. L Azimoh, “Optimal economic load dispatch in smart grids considering uncertainty”. In AFRICON, 2017 IEEE., Cape Town, South Africa, Sept. 18–20, 2019, pp. 1277–1282. Doi: https://doi.org/10.1109/AFRCON.2017.8095666

F. Lezama, J. Soares, Z. Bale and J. Rueda, “WCCI 2018 Competition Evolutionary Computation in Uncertain Environments: A Smart Grid Application. Test bed: Optimal scheduling of distributed energy resources considering uncertainty of renewables, EVs, load forecast and market prices,” in Proc. IEEE WCCI, Rio de Janeiro, Brazil, Jul. 8–13, 2018, pp. 1–19. Available in: http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/

Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain Environments—A Survey,” IEEE Trans. Evol. Comput., vol. 9, no. 3. pp. 303–317, Jun. 2005. Doi: https://doi.org/10.1109/TEVC.2005. 846356

M. Gendreau and J.-Y. Potvin, “Handbook of Metaheuristics,” vol. 2, Switzerland: Springer Science+Business Media, 2010. Doi: https://doi.org/10.1007/978-1-4419-1665-5

Y. Zhao, J. Cao, X. Lai, C. Yin and T. Chen, “Ensemble based constrained-optimization extreme learning machine for landmark recognition,” 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 Jul. 2015, pp. 3884–3889. Doi: https://doi.org/10.1109/ChiCC.2015.7260239

S. Hui and P. N. Suganthan, “Ensemble and Arithmetic Recombination-Based Speciation Differential Evolution for Multimodal Optimization,” in IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 64–74, Jan. 2016. Doi: https://doi.org/10.1109/TCYB.2015.2394466

X. Li, S. Ma and Y. Wang, “Multi-Population Based Ensemble Mutation Method for Single Objective Bilevel Optimization Problem,” in IEEE Access, vol. 4, no. 1, pp. 7262–7274, Oct. 2016. Doi: https://doi.org/10.1109/ACCESS.2016.2617738

V. Miranda and R. Alves, “Differential Evolutionary Particle Swarm Optimization (DEEPSO): A Successful Hybrid,” 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, Ipojuca, Brazil, 8–11 Sept. 2013, pp. 368–374. Doi: https://doi.org/10.1109/BRICS-CCI-CBIC.2013.68

D. G. Mayer, B. P. Kinghorn and A. A. Archer, “Differential evolution – an easy and efficient evolutionary algorithm for model optimisation,” Agricultural Systems, vol 83, no. 3, pp. 315–328, Mar. 2005. Doi: https://doi.org/10.1016/j.agsy.2004.05.002

F. Marini and B. Walczak, “Particle swarm optimization (PSO). A tutorial,” Chemometrics and Intelligent Laboratory Systems, vol 149, Part B, pp. 153–165, Dec. 2015. Doi: https://doi.org/10.1016/j.chemolab.2015.08.020

P. Hansen and N. Mladenović, “Variable neighborhood search: Principles and applications,” European Journal of Operational Research, vol. 130, no. 3, pp. 449–467, May. 2001. Doi: https://doi.org/10.1016/S0377-2217(00)00100-4

E. Vargas, L. Macedo, P. Bueno and R. Romero, “A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis,” International Journal of Electrical Power & Energy Systems, vol. 94, no. 1, pp. 41–56, Jan. 2018. Doi: https://doi.org/10.1016/j.ijepes.2017.06.017

R. Brandl, P. Kotsampopoulos, G. Lauss, M. Maniatopoulos, M. Nuschke, J. Montoya and D. Strauss-Mincu, “Advanced Testing Chain Supporting the Validation of Smart Grid Systems and Technologies,” in 2018 IEEE Workshop on Complexity in Engineering, Florence, Italy, Oct. 10–12, 2018. pp. 1–6. Doi: https://doi.org/10.1109/CompEng.2018.8536223

Published

2019-06-08

How to Cite

García-Guarín, P. J., Cantor-López, J., Cortés-Guerrero, C., Guzmán-Pardo, M. A., & Rivera, S. (2019). Implementation of the VNS-DEEPSO algorithm for the energy dispatch in smart distributed grid. INGE CUC, 15(1), 142–154. https://doi.org/10.17981/ingecuc.15.1.2019.13