Signal monitoring system using the UPTC Satellite Ground Station

Authors

DOI:

https://doi.org/10.17981/ingecuc.15.1.2019.04

Keywords:

ETS-UPTC Satellite Earth Station, weather station, remote monitoring of signals on earth, sensor node, percentage of use, meteorological variables

Abstract

Introduction: The Satellite Earth Station, corresponds to a technological infrastructure made up of hardware and software devices that allow communication from the ground with a satellite.

Objective: The main purpose of this article is to describe the phases developed with the implementation of a remote monitoring system of ground signals, for the analysis of meteorological variables, and thus increase the percentage of use of the devices that make up the infrastructure of Estación Terrena Satelital de la Universidad Pedagógica y Tecnológica de Colombia (ETS-UPTC).

Methodology: The methodological design allowed to validate the increase in the percentage of daily use of the ETS-UPTC. It allowed the identification of the applications susceptible to be monitored on land, the description of the general structure of the system, the adaptation of the sensor node and the treatment of data for its later visualization in the coordinating node.

Results: It was possible to develop a sensor node, whose implementation and adaptation with the ETSUPTC allowed to increase its level of daily use by approximately 20%.

Conclusions: The integration of the monitoring system of meteorological variables with the ETS-UPTC, serve as an alternative, to be replicated in other satellite earth stations built under the traditional monolithic design, or as a reference to implement other monitoring solutions that require the use of different areas of knowledge in their design and implementation. The development of the project constitutes a social contribution that the Universidad Pedagógica y Tecnológica de Colombia can offer to the departments of Boyacá and Casanare, through the consolidation and distribution of information on the behavior of meteorological variables, data that could be used for the early warning system and risk prevention.

Downloads

Download data is not yet available.

Author Biographies

Jairo Alonso Mesa Lara, Universidad Pedagógica y Tecnológica de Colombia. Tunja, (Colombia)

Ingeniero Electrónico, Magíster en Ciencias de la Información y las Comunicaciones, Docente de planta, Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ingeniería, Escuela de Ingeniería de Sistemas y Computación, Tunja, Boyacá, Colombia. https://orcid.org/0000-0001-7303-3055 

Jenny Amparo Rosales Agredo, Universidad Pedagógica y Tecnológica de Colombia. Tunja, (Colombia)

Ingeniera de Sistemas, Magíster en Ingeniería Industrial, Docente de planta, Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ingeniería, Escuela de Ingeniería Electrónica, Tunja, Boyacá, Colombia. https://orcid.org/0000-0001-8004-4369

Maria Paula Maury Atencia, Universidad Pedagógica y Tecnológica de Colombia. Tunja, (Colombia)

Ingeniera Electrónica, Magister en Tecnología Informática, Docente ocasional, Universidad Pedagógica y Tecnológica de Colombia, Facultad de Estudios a Distancia, Escuela de Ciencias Tecnológicas, Tunja, Boyacá, Colombia.https://orcid.org/0000-0002-5873-8759

References

R. Neri, Comunicaciones por Satélite. México D.F., Mex: Thomson, 2003.

O. F. Vera, “Análisis de desempeño del protocolo ax.25 en el enlace de la estación terrena satelital UPTC”, Univ. Pedagógica y Tecnológica de Colombia, Tunja, 2015.

L. Drewes, El sector espacial argentino: Instituciones referentes, proveedores y desafíos. 1er. ed. Benavídez: ARSAT – Empresa Argentina de Soluciones Satelitales, 2014.

Instituto Nacional de Pesquisas Espacias – INPE. “Programa de Desenvolvimiento de Cubesat–NanosatC–Br1”. INPE/NanosatC-BR. http://www.inpe.br/crs/nanosat/index.php [acceso: 16 de marzo de 2016

J. D. Puerto, "Universidad Sergio Arboleda y GENSO, en la Órbita de la Innovación". Ingeniería e Industria Aero­espacial. http://ingenieriaindustrialsergioarboleda.blogspot.com/2012/05/universidad-sergio-arboleda-y-genso-en.html [acceso: marzo 16 de 2016

L. E. Aparicio y C. Cerquera, “Diseño, simulación e implementación de una estación terrena CUBESAT UD – USCO”, Convenio de cooperación académica Universidad Surcolombiana-Universidad Distrital Francisco José de Caldas, Neiva, 2014.

O. Pérez y M. Á. Hernández, "Diseño e Implementación de una Estación Terrena en la Unipanamericana Bogotá para seguimiento de Satélites en la banda de Radioaficionados", Tesis grado, Dept. Ing. Telcom., Unipanamericana., Bogotá, D.C., Col, 2014.

J. E. Espíndola y J. A. Mesa, “Implementación de estación terrena para seguimiento a picosatélites de órbita LEO”, Ventana Informática, vol. 26, no. 1, pp. 77–91, Ene. 2012.

J. E. Espíndola, C. A. Nonsoque y D. Molano, “Montaje e implementación de una estación terrena para el seguimiento de satélites de órbita baja” en Tenth Latin American and Caribbean Conference for Engineering and Technology - Universidad Tecnológica de Panamá, Panamá City, Jul 24–27, 2012.

O. Vera y J. Mesa, “Modelo para el sistema de posicionamiento de las antenas de la estación terrena satelital de la Universidad Pedagógica y Tecnológica de Colombia”, Ingenio Magno, vol. 6, nº 1, pp. 24–33, Ene. 2015.

J. E. Espíndola, R. Ferro y J. A. Mesa, “Direccionamiento automático de antenas en estaciones terrenas de seguimiento a picosatelites”, Tecnura, vol. 17, nº 35, p. 26–37, Ene. 2013.

R. Hernández, C. Fernández y P. Baptista, Metodología de la Investigación, México D.F., Mex: McGraw-Hill, 2014.

Cuadro Nacional de Atribución de Bandas de Frecuencia Actualización julio 2016, Agencia Nacional del Espectro, Colombia, 2016.

S. Sendra, F. Llario, L. Parra y J. Lloret, “Smart Wireless Sensor Network to Detect and Protect Sheep and Goats to Wolf Attacks”, Recent Advances in Communications and Networking Technology, vol. 2, no. 2, pp. 91–101, Dec. 2013. https://doi.org/10.2174/22117407112016660012

C. Lozoya, A. Aguilar, and C. Mendoza, “Service Oriented Design Approach for a Precision Agriculture Datalogger”, IEEE Latin America Transactions, vol. 14, no. 4, pp. 1683–1688, Apr. 2016. https://doi.org/10.1109/TLA.2016.7483501

M. Manzano, S. Montesinos, J. A. Carazo y C. Vázquez, “Las redes inalámbricas de sensores y su aplicación en el sector agroalimentario”, Revista de la Alta Tecnología y la Sociedad, vol. 7, no. 1, pp. 1–7, Oct. 2015. Disponible en https://drive.google.com/drive/folders/0B4GS5FQQLif9QURhaVU4aWVJdDQ

A. Pilco, V. Zavala, O. Martínez and T. Flores, “Implementation of the WSN prototype to monitoring of patients on ESPOCH comprehensive health center”, in IEEE Thirty Fifth Central American and Panama Convention – CONCAPAN XXXV, Tegucigalpa, Honduras, Nov. 11–13, 2015. https://ieeexplore.ieee.org/document/7428479

M. Vázquez, J. Garibaldi, J. Nieto, and J. de Dios, “Model for Personalization of Mobile Health Systems for Monitoring Patients with Chronic Disease”, IEEE Latin America Transactions, vol. 14, no. 2, pp. 965–970, Mar. 2016. https://doi.org/10.1109/TLA.2016.7437247

J. P. Tello, O. Manjarrés, M. Quijano, A. Blanco, F. Varona, and M. Manrique, “Remote Monitoring System of ECG and Human Body Temperature Signals”, IEEE Latin America Transactions, vol. 11, no. 1, pp. 314–318, Apr. 2013. https://doi.org/10.1109/TLA.2013.6502822

H. Kaschel y J. Pérez, “Monitoreo ubicuo de salud en tiempo real con WBSN”, Revista Chilena de Ingeniería, vol. 22, no. 2, pp. 169–176, Apr. 2014. http://dx.doi.org/10.4067/S0718-33052014000200003

J. R. Ruiz, C. E. Vargas, E. Villarreal, E. Torres, D. Díaz, y F. Univio, “Sistema para monitoreo inalámbrico de niveles de gas metano, temperatura y monóxido de carbono en túneles viales”, Revista Entérese Boletín Científico Universitario, vol. 32, no. 1, pp. 38–43, Jun. 2012.

G. Espitia y Á. Mejía, “Plataformas tecnológicas aplicadas al monitoreo climático”, Prospectiva, vol. 11, no. 2, pp. 78–87, Jul. 2013.

J. A. Blanco y J. N. Pérez, “Redes inalámbricas de geosensores aplicadas en sistemas de observación y monitoreo ambiental”, Gerencia Tecnológica Informática, vol. 11, no. 29, pp. 59–68, Ene. 2012.

M. Quiñones, V. González, L. Quiñones, C. Valdivieso, and W. Yaguana, “Design of a smart parking system using wireless sensor network”, In: 10th Iberian Conference on Information Systems and Technologies (CISTI), Aveiro, portugal, Jun. 17–20, 2015. https://doi.org/10.1109/CISTI.2015.7170430

F. J. Enríquez, E. Sifuentes, J. Cota, L. H. Rascón, J. F. Estrada, y F. J. López, “Sistema de monitoreo de variables eléctricas V, I y P”, CULTCyT, vol. 12, no. 57, Especial 1, pp. 28–36, Sept. 2015. Disponible en http://erevistas.uacj.mx/ojs/index.php/culcyt/article/viewFile/769/736

A. Canedo-Rodríguez, J. Rodríguez, V. Álvarez-Santos, R. Iglesias y C. Regueiro, “Mobile Robot Positioning with 433-MHz Wireless Motes with Varying Transmission Powers and a Particle Filter”, Sensors, vol. 15, no. 5, pp. 10194-10220, Apr. 2015. https://doi.org/10.3390/s150510194

E. Sifuentes, R. González, G. Bravo, y R. G. Moreno, “Nodo sensor inalámbrico para medir iluminación”, CULTCyT, vol. 12, no. 56, May. 2015.

DHT11 Humidity & Temperature Sensor, Osepp Electronics. [En línea . Disponible en https://www.mouser.com/ds/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf

Arduino, “Arduino Uno & Genuino Products”. Store Arduino. https://www.arduino.cc/en/main/arduinoBoardUno

ZigBee RF Modules XBEE2, XBEEPRO2, PROs2B. User Guide, Digi International, [En línea . Disponible en https://www.digi.com/resources/documentation/digidocs/pdfs/90000976.pdf [acceso: 04 de Febrero de 2017

Digi International Inc. (Abril, 2017) XCTU-OSX, [En línea . Disponible en https://www.digi.com/resources/documentation/digidocs/90001526/tasks/t_download_and_install_xctu.htm

Published

2019-03-17

How to Cite

Mesa Lara, J. A., Rosales Agredo, J. A., & Maury Atencia, M. P. (2019). Signal monitoring system using the UPTC Satellite Ground Station. INGE CUC, 15(1), 36–44. https://doi.org/10.17981/ingecuc.15.1.2019.04