Analysis of the impact of Analog-to-Digital Conversion in the Performance of Digitized RoF Systems

Authors

DOI:

https://doi.org/10.17981/ingecuc.15.1.2019.07

Keywords:

Digitized RoF (DRoF), Dynamic Range, NG-PON2, CRAN, VCSEL

Abstract

Introduction: The impact of the digitalization process on the performance of a scenario based on Radio-on-Fiber technology at intermediate frequency is numerically assessed.

Objective: Assess the impact of the process of digitalization, in the performance of scenario Radio-over-fiber digitized intermediate frequency (IF-DRoF).

Methodology: The performance of an IF-DRoF system against the error is evaluated as a function of the link distance and the number of resolution bits of the Analog-to-Digital Converter (ADC), and the results are compared with the analog Radio-over-Fiber (ARoF) architecture. The DRoF scenario introduces an ADC at the transmitter to digitize the signals, and a Digital-to-Analog converter (DAC) at the receiver to reconstruct them. The optical transmitter uses a low cost Directly Modulated Vertical Cavity Emitting Laser (DM-VCSEL).

Results: IF-DRoF scenario extends the transmission distance by 18 km (from 25 up to 48 km), and 22 km (from 25 up to 47 km) using an ADC with 4 and 8 bit of resolution, respectively, when compared to ARoF. Also, for a bit error rate (BER) equal to 10-9, the IF-DRoF system increases the range by 7 km, and the bit rate scales as the product number of resolution bits of the ADC × sampling rate (8× 1.25 Gb/s = 10 Gb/s). The sensitivity level measured at the receiver for a maximum range of 42 km was -21 dBm for a BER of 10-5@ 4 bits of resolution.

Conclusions− IF-DRoF system is a flexible and low-cost solution that extends the transmission distance and scales with bitrate as n bits × sampling rate comparing with analog RoF. It is shown that the dynamic range is independent of the transmission distance except when the signal level falls below the sensitivity of the optical link photodetector.

Downloads

Download data is not yet available.

Author Biographies

Eduardo Avendaño Fernandez, Universidad de Antioquia. Medellín, (Colombia). Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, (Colombia)

Received the undergraduate degree in Electronic Engineering in 2001, the MSc degree in Teleinformatics in 2005 from the Universidad Distrital Francisco José de Caldas, Bogotá. Actually, He candidate to PhD degree in Electronics Engineering from the Universidad de Antioquia in Medellín, Colombia. Currently, he is Associate Professor at the Electronic Engineering School, Engineering Faculty, Universidad Pedagógica y Tecnológica de Colombia. His research interests include: digital signal processing, optical communications and machine learning techniques applied for digital, hybrid optical-wireless communications.

Jhon James Granada Torres, Universidad de Antioquia. Medellín, (Colombia)

Recibió el título de Ingeniero Electrónico y de magíster en ingeniería de telecomunicaciones en la Universidad Nacional de Colombia, en 2010 y 2012 respectivamente. En 2017 recibió por parte de la Universidad de Antioquia, el grado de Doctor en Ingeniería Electrónica. Actualmente se desempeña como profesor de la Universidad de Antioquia. Sus temas de interés están en el marco de las comunicaciones ópticas y el procesamiento digital de señales.

Ana María Cardenas Soto, Universidad de Antioquia. Medellín, (Colombia)

Ingeniera Electrónica (1992) por la Universidad de Antioquia y Ph.D. (2003) por la Universidad Politécnica de Valencia. Profesora e investigadora de la Universidad de Antioquia. Ha participado en diferentes proyectos de diseño e implementación de infraestructura de telecomunicaciones para operadoras de telecomunicaciones. Su interés de investigación se centra en las redes ópticas elásticas y la aplicación de la fotónica al Internet de las Cosas.

Neil Guerrero Gonzalez, Universidad Nacional de Colombia Sede Manizales. Manizales, (Colombia)

Recibió su titulo de Ingeniero Electrónico en 2005; y el diploma de magíster en Ingeniería de la Universidad Nacional de Colombia, Manizales in 2007. Obuvo el título de Doctor en Fotónica de la Universidad Técnica de Dinamarca (DTU) en 2011, ese mismo año fue investigador posdoctoral en el departamento de Fotónica del DTU en el proyecto Europeo CHRON. De 2012-2015 fue investigador en el Centro de Investigación Europeo (ERC) Huawei Technologies Duesseldorf GmbH en Munich y luego, en el Centro de investigación y desarrollo de las Telecomunicaciones (CPQD) en Campinas – Brasil. Entre 2015 y 2016 fué investigador posdoctoral en el grupo de sistemas fotónicos del Instituto Nacional Tyndal en Irlanda. Actualmente es profesor asociado de la Universidad Nacional de Colombia con el Departamento de Ingeniería Eléctrica y Electrónica. Sus principales áreas de interés incluyen el procesamiento digital de señal avanzado aplicado en sistemas de comunicación híbrida fibra-inalámbrico en las redes de siguiente generación.

References

C. Browning, A. Farhang, A. Saljoghei, N. Marchetti, V. Vujicic, L. E. Doyle and L. P. Barry, “5G wireless and wired convergence in a passive optical network using UF-OFDM and GFDM”, IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, May. 21—25, 2017. pp. 386—392. https://doi.org/10.1109/ICCW.2017.7962688

D. H. Hailu, B. G. Grevehaweria, S. H. Kebede, G. G. Lema and G. T. Tesfamariam, “Mobile fronthaul transport options in C-RAN and emerging research directions: A comprehensive study”, Optical Switching and Networking, vol. 30, pp. 40—52, Nov. 2018. https://doi.org/10.1016/j.osn.2018.06.003

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger and L. Dittmann, “Cloud RAN for mobile networks – a technology overview”, IEEE Surveys and Tutorials journal, vol. 17, no. 1, pp. 405–426, Sept. 2014. https://doi.org/10.1109/COMST.2014.2355255

J. Wu, S. Rangan and H. Zhang. Green Communications: Theoretical Fundamentals, Algorithms and Applications, 1st Ed., Boca Raton, Florida, USA: CRC Press, 2016.

M. L. Farwell, W. S. Chang and D. R. Huber, “Increased linear dynamic range by low biasing the Mach-Zehnder modulator”, IEEE Photonics Technology Letters, vol. 5, no. 7, pp. 779—782, Jul. 1993. https://doi.org/10.1109/68.229804

P. A. Gamage, A. Nirmalathas, C. Lim, D. Novak and R. Waterhouse, “Design and Analysis of Digitized RF-Over-Fiber Links”, Journal of Lightwave Technology, vol. 27, no. 12, pp. 2052—2061, June 15, 2009. https://doi.org/10.1109/JLT.2008.2006689

R. S. Oliveira, C. R. Francês, J. C. Costa, D. F. Viana, M. Lina and A. Teixeira, “Analysis of the cost-effective digital radio over fiber system in the NG-PON2 context”, In: 16th International Telecommunications Network Strategy and Planning Symposium, Funchal, Portugal, Sept. 17—19, 2014, https://doi.org/10.1109/NETWKS.2014.6959262

V. A. Thomas, M. El-Hajjar and L. Hanzo, “Performance Improvement and Cost Reduction Techniques for Radio Over Fiber Communications”, IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 627—670, Jan. 2015. https://doi.org/10.1109/COMST.2015.2394911

P. P. Monteiro, D. Viana, J. da Silva, D. Riscado, M. Drummond, A. Oliveira, N. Silva and P. Jesus, “Mobile fronthaul RoF transceivers for C-RAN applications”, in 17th International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, Jul. 5—9, 2015. https://doi.org/10.1109/ICTON.2015.7193452

G. S. D. Gordon, M. J. Crisp, R. V. Penty and I. H. White, “High-Order Distortion in Directly Modulated Semiconductor Lasers in High-Loss Analog Optical Links with Large RF Dynamic Range”, Journal of Lightwave Technology, vol. 29, no. 23, pp. 3577—3586, Dec. 2011. https://doi.org/10.1109/JLT.2011.2172773

R. Michalzik and K. Ebeling, “Operating Principles of VCSELs”, in Vertical-Cavity Surface-Emitting Laser Devices, H. E. Li and K. Iga, Eds. Heidelberg, Berlin, Germany; Springer, 2003. pp. 53—98.

A. Nirmalathas, P. A. Gamage, C. Lim, D. Novak, R. Waterhouse and Y. Yang, “Digitized RF transmission over fiber,” IEEE Microwave Magazine, vol. 10, no. 4, pp. 75—81, Jun. 2009. https://doi.org/10.1109/MMM.2009.932284

J. H. Reed, Software Radio: A Modern Approach to Radio Engineering, PTR, USA: Prentice Hall, 2002. pp. 13—14.

A. Malacarne, F. Fresi, G. Meloni, T. Foggi and L. Potì, “Time–Frequency Packing Applied to Cost-Effective IM/DD Transmission Based on Directly Modulated VCSEL”, J. Lightwave Technol., vol. 35, no. 20, pp. 4384—4391, Oct. 2017. https://doi.org/10.1109/JLT.2017.2743529

M. Cvijetic and I. B. Djordjevic, Advanced optical communication systems and networks, 1st Edition, Norwood MA, USA: Ed. Artech House, 2013.

J. A. Altabas, D. Izquierdo, J. A. Lazaro and I. Garcés, “Chirp-based direct phase modulation of VCSELs for cost-effective transceivers”, Opt. Lett., vol. 42, no. 1, pp. 583—586, Feb. 2017. https://doi.org/10.1364/OL.42.000583

Y. Yang, C. Lim and A. Nirmalathas, “Bit resolution enhanced digitized RF-over-fiber link”, 2010 IEEE International Topical Meeting on Microwave Photonics, Montreal, QC, 2010, pp. 177—180, Dec. 2010. https://doi.org/10.1109/MWP.2010.5664149

I. A. Alimi, A. L. Teixeira and P. P. Monteiro, “Toward an Efficient C-RAN Optical Fronthaul for the Future Networks: A Tutorial on Technologies, Requirements, Challenges, and Solutions”, IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 708—769, Nov. 2017. https://doi.org/10.1109/COMST.2017.2773462

J. S. Wey, D. Nesset, M. Valvo, K. Grobe, H. Roberts, Y. Luo and J. Smith, “Physical Layer Aspects of NG-PON2 Standards—Part 1: Optical Link Design”, J. Opt. Commun. Netw., vol. 8, no. 1, pp. 33—42, Jan. 2016. https://doi.org/10.1364/JOCN.8.000033

Desempeño de EVM como función de la longitud del enlace.

Published

2019-03-23

How to Cite

Avendaño Fernandez, E., Granada Torres, J. J., Cardenas Soto, A. M., & Guerrero Gonzalez, N. (2019). Analysis of the impact of Analog-to-Digital Conversion in the Performance of Digitized RoF Systems. INGE CUC, 15(1), 77–88. https://doi.org/10.17981/ingecuc.15.1.2019.07

Most read articles by the same author(s)