Influence of hydrolysis products on the performance in altitude of a gasoline and natural gas-fueled vehicle

Authors

DOI:

https://doi.org/10.17981/ingecuc.15.1.2019.08

Keywords:

natural gas, gasoline, hydrolysis, combustion, performance, vehicle

Abstract

Introduction: There is a great interest in reducing the use of fossil fuels due to the variation of prices and strong regulatory controls, which is why methods are being sought to reduce fuel consumption in internal combustion engines, such as the supply of products from the Hydrolysis of the water in the engine manifold.
Objective:
The objective of this paper is to present the results of an experimental methodology applied to estimate the mechanical and environmental performance of a vehicle fueled with gasoline and natural gas, when the engine is supplied with products resulting from the hydrolysis of water.

Methodology: For the supply of said products to the vehicle, an external hydrolysis device was installed, and the vehicle has been instrumented with a fifth wheel, temperature and engine revolutions speed sensors, to perform acceleration tests on a flat road and a road with longitudinal slope angle. Additionally, torque and power tests with a chassis dynamometer, and pollutant emissions and fuel consumption tests were carried out. The tests were conducted in the outskirts of the city of Bogotá DC - Colombia, located at 2650 m above sea level.

Results: The results show that the products of hydrolysis do not improve the mechanical performance of the vehicle, since they increase the time to arrive at the speeds defined in the acceleration tests up to 18% in the engine with gasoline and 7% in the engine with natural gas, and the torque and power are increase by around 1%. On the other hand, the results of the polluting emissions tests indicate that fuel consumption is reduced by about 7%.

Conclusions: The results indicate that the performance of the vehicle does not improve, although fuel consumption decreases, the environmental performance does not decrease.

Downloads

Download data is not yet available.

Author Biographies

Faustino Moreno Gamboa, Universidad Francisco de Paula Santander. Cúcuta (Colombia)

Ingeniero Mecánico de la Universidad Francisco de Paula Santander - Colombia (1997), Maestría en Ingeniería Mecánica de la Universidad de los Andes – Colombia (2003) y en la actualidad es Candidato a Doctor en Ingeniería de la Universidad Pontificia Bolivariana. El Ing. Moreno es docente asistente del Programa de Ingeniería Mecánica de la Universidad Francisco de Paula Santander – Colombia, y actúa en las siguientes áreas: fluidos y térmicas.  https://orcid.org/0000-0002-3586-4306

Elkin Gregorio Floréz Serrano, Universidad de Pamplona. Pamplona (Colombia)

Ingeniero Mecánico de la Universidad Francisco de Paula Santander - Colombia (1997), Maestría en Ingeniería Mecánica de la Universidad de los Andes – Colombia (2000) y Doctor en Ingeniería Mecánica, Fluidos y Aeronáutica de la Universidad Politécnica de Cataluña – España (2010). En la actualidad el Ing. Flórez es docente titular del Programa de Ingeniería Mecánica de la Universidad de Pamplona – Colombia, y actúa en las siguientes áreas: Termofluidos y Energías, Vibraciones mecánicas. https://orcid.org/0000-0002-3431-146X

Gonzalo Guillermo Moreno Conteras, Universidad de Pamplona. Pamplona (Colombia)

Ingeniero Mecánico de la Universidad Francisco de Paula Santander - Colombia (1999), Maestría en Ingeniería Mecánica de la Universidad de los Andes – Colombia (2004) y Doctor en Ingeniería Mecánica de la Universidad Federal de Santa Catarina – Brasil (2017). En la actualidad el Ing. Moreno es docente titular del Programa de Ingeniería Mecánica de la Universidad de Pamplona – Colombia, y actúa en las siguientes áreas: estática y dinámica de sistemas mecánicos con énfasis en diseño de mecanismos. https://orcid.org/0000-0003-3617-1381

References

U. S. Energy Information Administration, "Annual energy outlook 2013 with Projections to 2040", EIA, Washington DC, USA, DOE/EIA-0383(2013), Apr. 2013. [Online . Available: https://www.eia.gov/outlooks/aeo/pdf/0383(2013).pdf

L. C. Romero, I. León y J. F. Andrade, "Proyección de Demanda de Combustibles Líquidos y GNV en Colombia", UPME, Bogotá DC, Colombia, Revisión de Octubre de 2010, p. 60, Dic. 2010.

S. M. E. Muñoz, “Presentación e Proyecciones Gerencia de Generación de Demanda,” presented at the Convección Anual, Octubre 2011.

R. Shinnar, “The hydrogen economy, fuel cells, and electric cars”, Technology in Society, vol. 25, no. 4, pp. 455–476, Nov. 2003. https://doi.org/10.1016/j.techsoc.2003.09.024

R. M. Santilli, “A new gaseous and combustible form of water”, International Journal of Hydrogen Energy, vol. 31, no. 9, pp. 1113–1128, Aug. 2006. https://doi.org/10.1016/j.ijhydene.2005.11.006

D. LJ. Stojić, M. P. Marčeta, S. P. Sovilj and Š. S. Miljanić, “Hydrogen generation from water electrolysis—possibilities of energy saving”, Journal of Power Sources, vol. 118, no. 1–2, pp. 315–319, May. 2003. https://doi.org/10.1016/S0378-7753(03)00077-6

N. Zamel and X. Li, “Life cycle analysis of vehicles powered by a fuel cell and by internal combustion engine for Canada”, Journal of Power Sources, vol. 155, no. 2, pp. 297–310, Apr. 2006. https://doi.org/10.1016/j.jpowsour.2005.04.024

A. A. Al-Rousan, “Reduction of fuel consumption in gasoline engines by introducing HHO gas into intake manifold”, International Journal of Hydrogen Energy, vol. 35, no. 23, pp. 12930–12935, Dec. 2010. https://doi.org/10.1016/j.ijhydene.2010.08.144

N. Saravanan, G. Nagarajan, K. M. Kalaiselvan and C. Dhanasekaran, “An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique”, Renewable Energy, vol. 33, no. 3, pp. 422–427, Mar. 2008. https://doi.org/10.1016/j.renene.2007.03.015

J. D. Naber and D. L. Siebers, “Hydrogen combustion under diesel engine conditions”, International Journal of Hydrogen Energy, vol. 23, no. 5, pp. 363–371, May. 1998. https://doi.org/10.1016/S0360-3199(97)00083-9

M. SenthilKumar, A. Ramesh and B. Nagalingam, “Use of hydrogen to enhance the performance of a vegetable oil fuelled compression ignition engine”, International Journal of Hydrogen Energy, vol. 28, no. 10, pp. 1143–1154, Oct. 2003. https://doi.org/10.1016/S0360-3199(02)00234-3

A. C. Yilmaz, E. Uludamar and K. Aydin, “Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines” International Journal of Hydrogen Energy, vol. 35, no. 20, pp. 11366–11372, Oct. 2010. https://doi.org/10.1016/j.ijhydene.2010.07.040

P. Baptista, J. Ribau, J. Bravo, C. Silva, P. Adcock and A. Kells, “Fuel cell hybrid taxi life cycle analysis”, Energy Policy, vol. 39, no. 9, pp. 4683–4691, Sept. 2011. https://doi.org/10.1016/j.enpol.2011.06.064

T. Li, X. Chen and Z. Yan, “Comparison of fine particles emissions of light-duty gasoline vehicles from chassis dynamometer tests and on-road measurements”, Atmospheric Environment, vol. 68, no. 1, pp. 82–91, Apr. 2013. https://doi.org/10.1016/j.atmosenv.2012.11.031

S. J. Figueroa, G. G. Moreno y J. C. Serrano, “Relación entre la Contaminación del Aceite con Sílice y el desgaste del Motor”, Revista Colombiana de Tecnologías de Avanzada, vol. 1, no. 17, pp. 87–91, Dec. 2011. https://doi.org/10.24054/16927257.v17.n17.2011.179

H. H. Masjuki, A. M. Ruhul, N. N Mustafi, M. A. Kalam, M. I. Arbab and I. M. Rizwanul, “Study of production optimization and effect of hydroxyl gas on a CI engine performance and emission fueled with niodiesel blends”, International Journal of Hydrogen Energy, vol. 41, no. 33, pp. 14519–15528, Sept. 2016. https://doi.org/10.1016/j.ijhydene.2016.05.273

T. M. Ismail, K. Ramzy, B. E. Elnaghi, T. Mansour, M. N. Abelwhab, M. Abd El-Salam and M. I. Ismail, “Modeling and simulation of electrochemical analysis of hybrid spark-ignition engine using hydroxy (HHO) dry cell”, Energy Conversion and Management, vol. 181, no. 1, pp. 1–14, Feb. 2019. https://doi.org/10.1016/j.enconman.2018.11.067

M. Ozcanli, M. Atakan Akar, A. Calik and H. Serin, “Using HHO (Hydroxy) and hydrongen enriched castor oil biodiesel in compression ingnition engine”, International Journal of Hydrogen Energy, vol. 42, no. 36, pp. 23366–23372, Sept. 2017. https://doi.org/10.1016/j.ijhydene.2017.01.091

T. M. Ismail, K. Ramzy, M. N. Abelwhab, B. E. Elnaghi, M. Abd El-Salam, and M. I. Ismail, “Performance hybrid compression ignition engine using hydroxy (HHO) from dry cell”, Energy Conversion and Management, vol. 155, no. 1, pp. 287–300, Jan. 2018. https://doi.org/10.1016/j.enconman.2017.10.076

B. Subramanian and S. Ismail, “Production and use of HHO gas in IC engines”, International Journal of Hydrogen Energy, vol. 43, no. 14, pp. 7140–7154, Apr. 2018. https://doi.org/10.1016/j.ijhydene.2018.02.120

A. Rimkus, J. Matijosius, M. Bogdevicius. A. Bereczky and A. Török, “An investigation of the efficiency of using O2 and H2 (hydrooxile gas - HHO) gas additives in a ci engine operating on disel fuel and biodiesel”, Energy, vol. 152, no. 1, pp. 640–651, Jun. 2018. https://doi.org/10.1016/j.energy.2018.03.087

Published

2019-04-24

How to Cite

Moreno Gamboa, F., Floréz Serrano, E. G., & Moreno Conteras, G. G. (2019). Influence of hydrolysis products on the performance in altitude of a gasoline and natural gas-fueled vehicle. INGE CUC, 15(1), 89–98. https://doi.org/10.17981/ingecuc.15.1.2019.08