Operational failure analysis of a hydropneumatic system in a hospital facility

Authors

DOI:

https://doi.org/10.17981/ingecuc.14.1.2018.14

Keywords:

NPSHd, NPSHr, cavitation, pumping, head, suction

Abstract

Introduction: This paper presents the study of the operational failure of a hydro-pneumatic system for the supply of water to a hospital facility.

Objective: Determine the cause or causes for the interruption of the water supply of the hydropneumatics system to the building.

Methodology: The hydraulic characteristic of the pipe system was drawn and compared with the hydraulic characteristic of the hydro-pneumatic system, verifying that it fully satisfied the load and flow requests demanded by the building. Given the presence of noises and vibrations in the suction pipe, the comparison of the required NPSH vs. the available NPSH determined that the current design of the suction pipe is the cause for the hydro-pneumatic system failure.

Results: Three variants for the modification of the design of the suction pipe in order to eliminate the phenomenon of cavitation are proposed. This avoids putting into operation an auxiliary pump that increases energy consumption by 8,760 kWh/year with a cost of 1,839.6 $/year and the insecurity in the water service.

Conclusions: The selected hydro-pneumatic equipment satisfactorily meets the requirements of the installation, except for the design of the suction pipe where the available NPSH is lower than the NPSH required at flow rates higher than 900 l/min, hence, producing the cavitation phenomenon and causing the output of system’s service.

Downloads

Download data is not yet available.

Author Biographies

José Pedro Monteagudo Yanes, Universidad de Cienfuegos. Cienfuegos (Cuba)

José P. Monteagudo Yanes. Ingeniero mecánico de la Universidad Central de Las Villas (UCLV), Cuba, 1975. Doctor en Ciencias Técnicas del Instituto Superior Politécnico “José A. Echeverría”, La Habana, 1997. Profesor titular y profesor consultante de la Universidad de Cienfuegos. Es miembro del consejo científico, del comité académico de la maestría en Eficiencia energética y del comité académico del doctorado de la Facultad de Ingeniería de la Universidad de Cienfuegos. Es miembro del comité de expertos del Ministerio de Ciencia, Tecnología y Medio Ambiente y miembro del Tribunal Nacional para la Defensa de Grados Científicos de la República de Cuba en la rama energética mecánica. 

Reinier Jiménez Borges, Universidad de Cienfuegos. Cienfuegos (Cuba)

Reinier Jiménez Borges. Recibió el título de Ingeniero mecánico en el 2014. Obtuvo el título de magíster en Eficiencia energética en el año 2017 de la Universidad de Cienfuegos. Hasta la fecha se ha desempeñado como profesor de Mecánica de los Fluidos. Ha publicado varios artículos en revistas nacionales e internacionales. Actualmente, es miembro del grupo de investigación sobre Eficiencia energética y fuentes renovables de energía.

References

[1] FIDE, Fascículo de FIDE de apoyo al programa de ahorro de energía del sector eléctrico, Recomendaciones para ahorro de energía en bombas centrífugas, México, mayo de 2005.
[2] L. E. Díaz, Y. Mustafá I y L. G. Rios, “Construcción y puesta en marcha de un banco de cavitación para bombas centrífugas pequeñas,” Sci. Tech., vol. 1, no. 30, enero de 2006. http://dx.doi.org/10.22517/23447214.6499
[3] F. B. Cruz, “Análisis de las variables de la cavitación en bombas centrífugas horizontales”, Tesis de pregrado, Instituto Politécnico Nacional, México, D. F., 2013.
[4] Z. Zou, F. Wang, Z. Yao, R. Tao, R. Xiao y H. Li, “Impeller radial force evolution in a large double-suction centrifugal pump during startup at the shut-off condition,” Nucl.Eng. Des., vol. 310, pp. 410–417, diciembre de 2016. http://dx.doi.org/10.1016/j.nucengdes.2016.10.034
[5] B. G. Park, Experimental study of debris head loss through a pressurized water reactor recirculation sump screen after LOCA, Nuclear Engineering and Design, vol. 241, no. 7, pp, 2462–2469, abril de 2011. http://dx.doi.org/10.1016/j.nucengdes.2011.04.013
[6] Z. Han y S. K. Vanapalli, “Relationship between resilient modulus and suction for compacted subgrade soils,” Eng.Geol., vol. 211, pp. 85–97, agosto de 2016. http://dx.doi.org/10.1016/j.enggeo.2016.06.020
[7] P. Cao, Y. Wang, C. Kang, G. Li y X. Zhang, “Investigation of the role of non-uniform suction flow in the performance of water-jet pump,” Ocean Eng., vol. 140, pp. 258–269, Aug. 2017. http://dx.doi.org/10.1016/j.oceaneng.2017.05.034
[8] T. Wu y J. D. Englehardt, “Mineralizing urban netzero water treatment: Field experience for energypositive water management,” Water Res., vol. 106, pp. 352–363, diciembre de 2016. http://dx.doi.org/10.1016/j.watres.2016.10.015
[9] N. D. Karlsen-Davies y G. A. Aggidis, “Regenerative liquid ring pumps review and advances on design and performance,” Appl. Energy, vol. 164, pp. 815–825, febrero de 2016. http://dx.doi.org/10.1016/j.apenergy.2015.12.041
[10] K. K. Botros, J. Geerligs y B. Watson, “Experimental investigation aiming at improving the suction flow capability of a gas expeller,” J. Nat. Gas Sci. Eng., vol. 23, pp. 458–463, marzo de 2015. http://dx.doi.org/10.1016/j.jngse.2015.02.025
[11] J. Colt, P. Plesha y J. Huguenin, “Impact of net positive suction head on the design and operation of seawater pumping systems for use in aquaculture,” Aquac. Eng., vol. 35, no. 3, pp. 239–257, octubre de 2006. http://doi:10.1016/j.aquaeng.2006.03.001
[12] Y. Zhang, S. Hu, J. Wu, Y. Zhang y L. Chen, “Multi-objective optimization of double suction centrifugal pump using Kriging metamodels,” Adv. Eng. Softw., vol. 74, pp. 16–26, agosto de 2014. http://dx.doi.org/10.1016/j.advengsoft.2014.04.001
[13] F. Burlon, D. Micheli, R. Furlanetto, M. Simonato y V. Cucit, “Cavitation Detection and Prevention in Professional Warewashing Machines,” Energy Procedia, vol. 101, pp. 718–725, noviembre de 2016. https://doi.org/10.1016/j.egypro.2016.11.091
[14] G. Carraro, P. Pallis, A. D. Leontaritis, S. Karellas, P. Vourliotis, S. Rech y A. Lazzaretto, “Experimental performance evaluation of a multi-diaphragm pump of a micro-ORC system,” Energy Procedia, vol. 129, pp. 1018–1025, septiembre de 2017. https://doi.org/10.1016/j.egypro.2017.09.232
[15] CRANE, Fluid flow: in valves, accessories and pipes, Mc-Graw-Hill Interamericana, 2011.
[16] Technical Data CN50-200C, Sea Land, Cod: 175128000, (PD) Italia, Disponible en: www.sea-land.it

Published

2018-08-27

How to Cite

Monteagudo Yanes, J. P., & Jiménez Borges, R. (2018). Operational failure analysis of a hydropneumatic system in a hospital facility. INGE CUC, 14(1), 151–158. https://doi.org/10.17981/ingecuc.14.1.2018.14