Anti-collision system for blind people using evolutionary neural networks

Authors

DOI:

https://doi.org/10.17981/ingecuc.14.2.2018.03

Keywords:

Cooperative co-evolutionary genetic algorithm, blind, anti-collision system, neuro-evolutionary method, artificial neural network

Abstract

Introduction: This paper shows the design and implementation of an anti-collision system for blind people using evolutionary artificial neural networks (EANNs).
Objective: Present the implementation of evolutionary neural networks in a guide system for the blind in the detection of static and moving obstacles.
Method: Methodology is based on the creation of artificial neural networks from the cooperative co-evolutionary genetic algorithm (CCGA), which is responsible for structuring, modifying and training neural networks. It uses the network definition matrix (NDM). NDM is made of a chromosome "chromosome is genetic algorithm part" is taken as the basis. Once is done the NDM, it creates an artificial neural network to be trained.
Results: Program carried out several neural networks, and generated 10 chromosomes in each execution. Artificial neural networks were trained with the CCGA and it applies the cooperation, they obtained the best anti-collision neural networks considering a definite time, anti-collision neural networks worked effectively for the detection of physical obstacles and with movement.
Conclusions: In the anti-collision system for the blind, we observed the effectiveness of neural networks in giving an answer, detecting both static and moving objects, providing security to the blind, avoiding collisions with objects.

Downloads

Download data is not yet available.

Author Biographies

Juan David Alvarado Coral, Universidad del Cauca. Popayán (Colombia)

Juan David Alvarado recibió el título de Ingeniero Electrónico en el año 2013, en la Corporación Universitaria Autónoma de Nariño, Pasto, Colombia. Estudiante de Maestría en Automática en la Universidad del Cauca, Popayán, Colombia. En sus Intereses incluye la Inteligencia Artificial, CAD, CAM y Robótica.

 

Elena Muñoz España, Universidad del Cauca. Popayán (Colombia)

Elena Muñoz recibió el título de magíster en ingeniería de la Universidad del Cauca en el 2009. Sus áreas de interés son la visión artificial y los sistemas inteligentes. Actualmente es profesora titular del Departamento de Electrónica, Instrumentación y Control de la Universidad del Cauca.

 

References

J. Mosquera and D. Rodríguez, "Sistema de reconocimiento de obstáculos para movilidad de Invidentes," tesis de pregrado, Universidad del Cauca, 2014. [2] T. Praczyk, "Neural anti-collision system for autonomous surface vehicle," Neurocomputing, vol. 149, pp. 559–572, 2015. https://doi.org/10.1016/j.neucom.2014.08.018

D. Curran and C. O'Riordan, "Increasing population diversity through cultural learning," Adaptive Behavior, vol. 14, no. 4, pp. 315–338, 2006. https://doi.org/10.1177/1059712306072335

G. Miller, P. Todd, and S. Hegde, "Designing neural networks using genetic algorithms," Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 379–384, 1989.

X. Yao and Y. Liu, "A new evolutionary system for evolving artificial neural networks," IEEE transactions on neural networks, vol. 8, no. 3, pp. 694–713, 1997. https://doi.org/10.1109/72.572107

N. García, C. Hervás, and J. Mu-oz, "Multi-objective cooperative coevolution of artificial neural networks," Neural Networks, vol. 15, no. 10, pp. 1259–1278, 2002. https://doi.org/10.1016/S0893-6080(02)00095-3

K. Ohkura, T. Yasuda, Y. Kawamatsu, Y. Matsumura, and K. Ueda, "MBEANN: Mutation-based evolving artificial neural networks," Neural Networks, pp. 936–945, 2007. https://doi.org/10.1007/978-3-540-74913-4_94

A. Azzini and A. Tettamanzi, "A new genetic approach for neural network design and optimization," tesis doctoral, Universidad de Milán, 2008.

A. Tallón, "Nuevos modelos de redes neuronales evolutivas para clasificación: aplicación a unidades producto y unidades sigmoide," tesis doctoral, Universidad de Sevilla, 2013.

A. Carvalho, "A cooperative coevolutionary genetic algorithm for learning bayesian network structures," Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, no. 1, pp. 1131–1138, 2011. https://doi.org/10.1145/2001576.2001729

Fig. 2. Red neuronal recurrente.  (Alvarado y Muñoz, 2018)

Published

2018-09-04

How to Cite

Alvarado Coral, J. D., & Muñoz España, E. (2018). Anti-collision system for blind people using evolutionary neural networks. INGE CUC, 14(2), 28–43. https://doi.org/10.17981/ingecuc.14.2.2018.03