Estación de medición de Rayos Ultravioleta energizado por un Sistema Fotovoltaico
DOI:
https://doi.org/10.17981/ingecuc.16.2.2020.12Palabras clave:
radiación ultravioleta, sistema fotovoltaico, espectro electromagnético, índice de radiación ultravioleta, solmáforoResumen
Introducción— En el presente artículo se expone el diseño y la implementación de una Estación de Medida de Radiación UltraVioleta (UV), conocida como Solmáforo, energizado por un sistema fotovoltaico aislado y manejo de información vía web haciendo uso del concepto Internet de las Cosas (IoT). Se presenta la implementación de un sistema que registra y muestra, de diferentes formas, el índice de radiación UltraVioleta (IUV) del lugar, haciendo uso de la técnica Timer Off, la cual es usada para reducir el consumo energético. Para el diseño del dispositivo se utilizó la metodología Top Down, comenzando desde un nivel superior, y dividiendo en módulos con un ciclo de verificación y simulación para un óptimo rendimiento a nivel de consumo energético. Para el bosquejo del sistema fotovoltaico aislado se utilizó el software “Herramienta para el Dimensionamiento de Sistemas Fotovoltaicos Aislados (DFSA)” desarrollado por los investigadores y en el cual se encuentra la base de datos de la radiación solar en el campus universitario. La estación está localizada en un espacio al aire libre del campus de la Universidad del Quindío, con el fin de mantener a la comunidad informada visualmente acerca de los niveles de radiación (UV). La visualización del IUV y la información de la exposición de radiación UV adecuada del cuerpo se hace de acuerdo bajo la Organización Mundial de la Salud (OMS). La visualización de las variables se hace en tiempo real por medio de una interfaz virtual implementada en Python y los datos almacenados en MySQL.
Objetivo— Desarrollar un sistema electrónico que permita la visualización del IUV en la Universidad del Quindío y presente información preventiva a la comunidad usando el concepto IoT.
Metodología— En este aspecto se comenzó con el marco teórico relacionado con los rayos solares y la radiación UV, para luego implementar una estación de medición con acceso al público del campus universitario, generando mensajes informativos de precaución. Luego con la metodología Top Down se divide cada parte del proyecto en submódulos que genera una mejor búsqueda y asentamiento de los materiales y métodos a utilizar.
Resultados— Al comprobar dos métodos para el cálculo del IUV, el propuesto por ROHM y el propuesto por Zhang y Huang, se demuestra que el último es el más apto. Esto permite que el sistema entregue mejor información de los cambios de radiación UV, además de que se comprueba que los cambios de temperatura y humedad son directamente proporcionales a los cambios de radiación UV. Finalmente, al implementar la técnica Timer Off, el consumo energético del todo el sistema baja y las 4 horas de autonomía que se esperaba al usar la energía almacenada en las baterías, pasa a ser de 5 hasta 7 horas.
Conclusiones— La construcción de la estación de medición de rayos UV energizado por un sistema fotovoltaico cumple con el propósito de sensibilizar a la gente sobre el peligro de la alta exposición de los rayos UV y las recomendaciones que deben seguir para evita los más posible este tipo de inconvenientes. Además, implementa metodologías modernas sobre el consumo de energía como el uso del método Time Off y de energía renovables al usar panales para almacenar la energía de la radiación solar, convirtiendo en un sistema de medición autónomo, además, hace uso del concepto del IoT en el desarrollo de plataformas vía web y el uso de sistemas de comunicación inalámbricas.
Descargas
Citas
Organización mundial de la Salud, Índice UV Solar Mundial, Gnb. Ch.: OMS, 2003. Available: https://apps.who.int/iris/bitstream/handle/10665/42633/9243590073.pdf;jsessionid=C5215835DB8619F578549420E62F4282?sequence=1
H.O. Benavides, “Información Técnica sobre la Radiación Ultravioleta, el Índice UV y Pronóstico”, IDEAM–METEO/001-2010, IDEAM, Bo. Co. 2010. Available: http://documentacion.ideam.gov.co/openbiblio/bvirtual/022454/NotatecnicaIUVPaginaWEBfinal.pdf
C. Lema & D. Zuleta, “Solmáforo (Semáforo Solar): Modelo Ambiental De Alerta Por Exposición a La Radiación Solar En Quito”, Tesis grado, Dpto. Ing. Amb, UPS, UIO, Ec., Abr. 2015. Available: https://dspace.ups.edu.ec/bitstream/123456789/10091/6/UPS-ST001607.pdf
UPME-IDEAM, Atlas de Radiación Solar de Colombia. Bog. Co.: INC, 2005.
J. R. Hernández, “Implementación de un Sistema Automatizado de Adquisición de Datos Meteorológicos y Solarimétricos”, Tesis grado, UNISON, Son., Hmo., 1996.
C. A. Correa, G. A. Marulanda & A. F. Panesso, “Impacto de la penetración de la energía solar fotovoltaica en sistemas de distribución: estudio bajo supuestos del contexto colombiano”, Tecnura, vol. 20, no. 50, pp. 85–95, Sep. 2016. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a06
X. Blanco & P. Kajdic, “El Sol, Nuestra Estrella”, RDU, vol. 10, no. 10, pp. 1–17, Oct. 2009. Available: http://www.revista.unam.mx/vol.10/num10/art67/int67.htm
W. Passchier & B. Bosnjakovic, Human Exposure to Ultraviolet Radiation: Risks an Regulations, NY, USA: Elsevier Science Publishers, 1987.
M. Allaart, M. Van-weele, P. Fortuin & H. Kelder, “An empirical model to predict the UV-index based on solar zenith angles and total ozone,” Meteorol Appl, vol. 105, no. 1 , pp. 59–65, 2004. https://doi.org/10.1017/S1350482703001130
S. Everett Jones & G. P. Guy Jr, “Sun Safety Practices Among Schools in the United States,” JAMA Dermatology, vol. 153, no. 5 , pp. 391–398, Mar. 2017. https://doi.org/10.1001/jamadermatol.2016.6274
F. J. López, “El cuerpo humano ante los rayos solares”, La radiación solar: efectos en la salud y el medio ambiente, B. de la Morena(TIR.), Es.: UNIA, pp. 122–136, 2010.
P. Kiedron, S. Stierle & K. Lantz, “Instantaneous UV Index and Daily UV Dose Calculations”, NEUBrew Uvindex, NOAA/EPA Brewer Network, Wash, USA, Dic., 2007. Available: https://www.esrl.noaa.gov/gmd/grad/neubrew/docs/UVindex.pdf
D. Díaz Corcobado & G. Carmona Rubio, Instalaciones solares fotovoltaicas, Md., Es.: Mc Graw Hill Interamericana de España, 2010.
M. Alonso Abella, Sistemas fotovoltaicos. Md, Ep: CIEMAT, 2005.
Energía Solar, “Módulo fotovoltaico”, Solar-Energia.net, [Online , 2018. Available: https://solar-energia.net/definiciones/modulo-o-panel-fotovoltaico.html
C. J. Romero, “Análisis del funcionamiento de paneles fotovoltaicos y su utilización en las regiones de la costa y sierra del Ecuador. Caso de estudio: Biblioteca Pompeu Fabra de Mataró”, M.S. Thesis, Dept. Org. Emp., UPC, Bcn, Es., 2015.
K. C. Tan, H. S. Lim & Z. M. Jafri, “Study on solar ultraviolet erythemal dose distribution over Peninsular Malaysia using Ozone Monitoring Instrument,” EJRS, vol. 21, no 1, pp. 105–110, Apr. 2018. https://doi.org/10.1016/j.ejrs.2017.01.001
W. Gong, M. Zhang, L. Wang, B. Hu & Y. Ma, “Measurement and estimation of ultraviolet radiation in Pearl River Delta, China,” J Atmos Sol-Terr Phys, vol. 123, no. 123, pp. 63–70, Feb. 2015. https://doi.org/10.1016/j.jastp.2014.12.010
H. Liu, B. Hu, L. Zhang, X.J. Zhao, K.Z. Shang, Y.S. Wang & J. Wang, “Ultraviolet radiation over China: Spatial distribution and trends,” Renew Sust Energ Rev, vol.76, no. 76, pp. 1371–1383, Sep. 2017. https://doi.org/10.1016/j.rser.2017.03.102
S.A. Kalogirou, S. Pashiardis & A. Pashiardi, “Statistical analysis and inter-comparison of erythemal solar radiation for Athalassa and Larnaca, Cyprus,” Renewable Energy, vol. 111, no. 1, pp. 580–579, Oct. 2017. https://doi.org/10.1016/j.renene.2017.04.043
M. El-Nouby & E. A. Ahmed, “An assessment of the ratio of ultraviolet-B to broadband solar radiation under all cloud conditions at a subtropical location”, Adv in Space Res, vol. 57, no. 57, pp. 764–775, Feb. 2016. https://doi.org/10.1016/j.asr.2015.11.030
C. Tiba & S. da Silva, “Enhancement of UV Radiation by Cloud Effect in NE of Brazil”, Int J Photoenergy, pp. 1–9, 2017. https://doi.org/10.1155/2017/8107435
G. G. Palancar, L. E. Olcese, M. Achad, M. L. López & B. M. Toselli, “A long term study of the relations between erythemal UV-B irradiance, total ozone column, and aerosol optical depth at central Argentina”, J Quant Spectrosc Radiat Transf, vol. 198, No. 1, pp. 40–47, Sep. 2017. https://doi.org/10.1016/j.jqsrt.2017.05.002
República de Colombia. Consejo de Bogotá, “Por medio del cual se promueve la creación de una red de vigilancia del índice de radiación solar ultravioleta, en la ciudad de Bogotá D.C. y se adoptan otras disposiciones”, Proyecto acuerdo No. 075, 2016. Available: http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=65284
Ministerio de Ambiente y Desarrollo Sostenible. Solmáforos, “Minambiente,” Minambiente.gov.com, [Online , 2017. Available: www.minambiente.gov.co
Revista Ambiental Catorce 6, “Cali y sus 'solmáforos' para medir la radiación”, [Online , 2018. Available: https://www.catorce6.com/investigacion/12449-cali-y-sus-solmaforos-para-medir-la-radiacion
R.J. Schweers, “Metodologías de diseño de hardware”, [Online, 2002. Available: http://sedici.unlp.edu.ar/bitstream/handle/10915/3835/2_-_Metodolog%C3%ADas_de_dise%C3%B1o_de_hardware.pdf?sequence=4&isAllowed=y
S. L. Alazate-Plaza, A. F. Serna-Ruiz y E. J. Marín-García, “Herramienta para el dimensionamiento de un sistema fotovoltaico aislado”, Lámpsakos, no. 16, pp. 61–74, Dic. 2016. https://doi.org/10.21501/21454086.1936

Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 INGE CUC

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los artículos publicados son de exclusiva responsabilidad de sus autores y no reflejan necesariamente las opiniones del comité editorial.
La Revista INGE CUC respeta los derechos morales de sus autores, los cuales ceden al comité editorial los derechos patrimoniales del material publicado. A su vez, los autores informan que el presente trabajo es inédito y no ha sido publicado anteriormente.
Todos los artículos están bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.