Un modelo Box Jenkins ARIMA para modelar y pronosticar la producción de mora de castilla en Colombia
DOI:
https://doi.org/10.17981/econcuc.44.1.2023.Econ.4Palabras clave:
Capacidad predictiva, análisis univariado, modelado de datos, producciónResumen
La producción de mora de castilla en Colombia contribuye al producto interno bruto, al empleo y al bienestar social de los agricultores del país. Es considerado de gran importancia económica una vez que los frutos de la mora son utilizados como materia prima para la agroindustria. De esta manera, la inestabilidad de la producción afecta la rentabilidad económica de los agricultores; por lo tanto, el pronóstico de la producción de mora posee un importante papel en la asignación de recursos y la toma de decisiones de los agricultores. Por lo tanto, el propósito del estudio fue modelar y pronosticar la producción de mora en Colombia utilizando un enfoque ARIMA de Box Jenkins para el período 1992-2023. Se seleccionó una investigación tipo cuantitativa, no experimental, correlacional y descriptiva. Se evaluó la adecuación del modelo y su capacidad predictiva mediante la verificación de los diferentes criterios de bondad de ajuste. Los resultados mostraron que ARIMA (1,1,0) fue el modelo más adecuado una vez que capturó el comportamiento de la serie temporal actual. Con base en los valores pronosticados se espera un aumento de 5,47% en la producción de mora para el período 2021-2023 lo que mejorará los ingresos de los agricultores y contribuirá, así a la reducción de la pobreza en el campo.
Descargas
Citas
Afzal, M., Rehman, H. U. & Butt, A. R. (2002). Forecasting: a dilemma of modules (A Comparison of Theory Based and Theory Free Approaches). Pakistan Economic and Social Review, 40(1), 1–18. Available: https://www.jstor.org/stable/25825233
Agronet. (s.f.). Blackberry statistical data [Database]. Available: http://www.agronet.gov.co/estadistica/Paginas/home.aspx
Akın, M., Eyduran, S., Çelik, Ş., Aliyev, P., Ayko, S. & Eyduran, E. (2021). Modeling and forecasting cherry production in Turkey. The Journal of Animal and Plant Science, 31(3), 773–781. https://doi.org/10.36899/JAPS.2021.3.0267
Arguello, R. & Valderrama-González, D. (2015). Sectoral and poverty impacts of agricultural policy adjustments in Colombia. Agricultural Economics, 46(2), 259–280. https://doi.org/10.1111/agec.12155
Burhan, A. & Khalid, M. (2006). Forecasting Kinnow production in Pakistan: An econometric analysis. International Journal of Agriculture & Biology, 8(4), 455–458. Available from https://www.fspublishers.org/published_papers/6916_..pdf
Brandt, J. & Bessler, D. (1984). Forecasting with Vector Autoregressions versus a Univariate ARIMA Process: An empirical example with U.S. Hog Prices. North Central Journal of Agricultural Economics, 6(2), 29–36. https://doi.org/10.2307/1349248
Brooks, C. (2019). Introductory econometrics for finance. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108524872
Cancino, S., Cancino-Escalante, G. y Cancino-Ricketts, D. (2020). Modelo econométrico para el cultivo de mora de castilla (Rubus glaucus) en los municipios de Pamplona y Chitagá, Norte de Santander, Colombia. Aibi Revista de Investigación, Administración e Ingeniería, 8(1), 37–43. https://doi.org/10.15649/2346030X.752
Cancino, S., Cancino, G. y Cancino, D. (2021). Análisis de regresión de los factores que afectan la rentabilidad económica de la producción de curuba. Dictamen Libre, (29), 1–13. https://doi.org/10.18041/2619-4244/dl.29.7861
Cárdenas M, Echavarría J, Hernández G, Maiguashca A, Meisel A, Ocampo, J. y Zárate, J. (2018). Coyuntura del sector agropecuario colombiano. [Informe de la Junta Directiva al Congreso de la República]. Bogotá, D.C.: Banco de la República. Disponible en https://www.banrep.gov.co/es/recuadro-2-coyuntura-del-sectoragropecuario-colombiano
Chen, C.-K. (2008). An integrated enrollment forecast model. AIR IR Applications, 15, 1–18. Available: https://eric.ed.gov/?id=ED504328
Dickey, D. & Fuller, W. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348
E-views (version 9.0). Econometric Views. [Software]. London: IHS. Available: www.eviews.com
Franco G. y Giraldo, M. (1998). El cultivo de la mora. Mosquera: Corporación Colombiana de Investigación Agropecuaria-CORPOICA. Disponible en http://bibliotecadigital.agronet.gov.co/handle/11348/4039
FAO. (s.f.). FAOSTAT. Crops and livestock products. [Database]. Available: https://www.fao.org/faostat/en/#data/QCL
Gajbihe, S., Wankhade, R. & Mahalle, S. (2010). Forecasting chickpea production in India using ARIMA model. International Journal of Commerce and Business Management, 3(2), 212–215. Available from http://researchjournal.co.in/upload/assignments/3_212-215.pdf
Gujarati, D. y Porter, D. (2010). Econometría. México D.F.: McGraw Hill.
Hamjah, M. A. (2014). Forecasting Major Fruit Crops Productions in Bangladesh using Box-Jenkins ARIMA Model. Journal of Economics and Sustainable Development, 5(7), 96–107. Available from https://core.ac.uk/download/pdf/234646336.Pdf
Henley D. (2012). The agrarian roots of industrial growth: rural development in South-East Asia and sub-Saharan Africa. Development Policy Review, 30(51), 25–47. https://doi.org/10.1111/j.1467-7679.2012.00564.x
Iqbal, M. A. (2020). Application of regression techniques with their advantages and disadvantages. Elektor Magazine, 4(1), 11–17. Available: https://www.elektormagazine.com/magazine-archive/2020
Judge, G., Hill, R., Griffiths W., Lutkepohl, H. & Lee, T. (1991). An introduction to the theory and practice of econometrics. [2 ed.]. New York: Wiley.
Khan, S. & Khan, U. (2020). Comparison of Forecasting Performance with VAR vs. ARIMA Models Using Economic Variables of Bangladesh. Asian Journal of Probability and Statistics, 10(2), 33–47. https://doi.org/10.9734/ajpas/2020/v10i230243
Khan, D., Ullah, A., Bibi, Z., Ullah, I., Zulfiqar, M. & Khan, Z. (2020). Forecasting area and production of guava in Pakistan: An econometric analysis. Sarhad Journal of Agriculture, 36(1), 272–281. http://dx.doi.org/10.17582/journal.sja/2020/36.1.272.281
Majid, R. & Mir, S. (2018). Advances in Statistical Forecasting Methods: An Overview. Economic Affairs, 63(4), 815–831. https://doi.org/10.30954/0424-2513.4.2018.5
Mehmood, S. & Ahmad, Z. (2013). Time series model to forecast area of mangoes from Pakistan: An application of univariate ARIMA model. Academy of Contemporary Research, 2(1), 10–15.
Meyler, A., Kenny, G. & Quinn, T. (1998). Forecasting Irish inflation using ARIMA models [Technical Paper 3/RT/98]. Dublín: Central Bank of Ireland. Available: https://www.centralbank.ie/docs/default-source/publications/research-technicalpapers/3rt98---forecasting-irish-inflation-using-arima-models-(kenny-meylerand-quinn).pdf
Phillips, P. & Perron, P. (1988). Testing for a unit root in time series regression. Biometricka, 75(2), 335–346. https://doi.org/10.2307/2336182
República de Colombia. MinAgricultura. (2021). Cadena productiva de la mora Dirección de Cadenas Agrícolas y Forestales. Marzo de 2021. Bogotá, D.C.: Minagricultura.Recuperado de https://sioc.minagricultura.gov.co/Mora/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf
Restrepo, M., Luna-Ramirez, J. & Castaño-Quintero, V. (2019). Evaluation of the shelf-life of blackberry pulp fortified with physiologically active compounds. Respuestas, 24(2), 16–26. Available: https://revistas.ufps.edu.co/index.php/respuestas/article/download/1827/2203?inline=1
Sánchez-López, E., Barreras-Serrano, A., Pérez-Linares, C., Figueroa-Saavedra, F. & Olivas-Valdez, J. (2013). Using an ARIMA model to forecast bovine milk production in Baja California, México. Tropical and Subtropical Agroecosystems, 16(3), 315–324. Available: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1290
Ullah, A., Khan, D. & Zheng, S. (2018). Forecasting of peach area and production wise econometric analysis. The Journal of Animal & Plant Sciences, 28(4), 1121–1127. Available: http://www.thejaps.org.pk/docs/v-28-04/23.pdf

Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Susan Elsa Cancino, Giovanni Orlando Cancino Escalante, Daniel Francisco Cancino Ricketts

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.